En mathématiques, la fonction successeur est une fonction récursive primitive S telle que S(n) = n+1 pour tout entier naturel n. Par exemple, S(1) = 2 et S(2) = 3.
La fonction successeur apparaît dans les axiomes de Peano qui définissent les entiers naturels. Elle n'y est pas définie à partir de l'opération d'addition, mais est une opération primitive qui sert à définir les entiers naturels à partir de 0, mais aussi les autres opérations sur les entiers naturels, dont l'addition. Par exemple, 1 est S(0), et l'addition sur les entiers est définie récursivement par:
{|
|-
| m + 0 || = m
|-
| m + S(n) || = S(m) + n
|}
Par exemple. 5 + 2 = 5 + S(1) = S(5) + 1 = 6 + 1 = 6 + S(0) = S(6) + 0 = 7 + 0 = 7
Pour construire les nombres entiers en théorie des ensembles, une approche classique consiste à définir le nombre 0 par l'ensemble vide {}, et le successeur S(x) par x ∪ { x }. L'axiome de l'infini garantit alors l'existence d'un ensemble N qui contient 0 et qui est clos par successeur, pris comme définition de l'ensemble des nombres entiers naturels.
La fonction successeur est le niveau 0 de la hiérarchie infinie des hyperopérations (utilisées pour construire l'addition, la multiplication, l'exponentiation, etc.).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Julius Wilhelm Richard Dedekind (né le à Brunswick et mort le dans la même ville) est un mathématicien allemand et un proche disciple de Ernst Kummer en arithmétique. Pionnier de l'axiomatisation de l'arithmétique, il a proposé une définition axiomatique de l'ensemble des nombres entiers ainsi qu’une construction rigoureuse des nombres réels à partir des nombres rationnels (méthode des « coupures » de Dedekind).
En mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
La tétration (ou encore nappe exponentielle, hyperpuissance, tour de puissances, super-exponentiation ou hyper4) est une « exponentiation itérée ». C'est le premier hyperopérateur après l'exponentiation. Le mot-valise tétration a été forgé par Reuben Goodstein sur la base du préfixe tétra- (quatre) et itération. La tétration est utilisée pour l'écriture des grands nombres. Elle suit l'addition, la multiplication et l'exponentiation comme indiqué ci-après : addition multiplication exponentiation tétration avec chaque fois b apparitions de la lettre a.