La tétration (ou encore nappe exponentielle, hyperpuissance, tour de puissances, super-exponentiation ou hyper4) est une « exponentiation itérée ». C'est le premier hyperopérateur après l'exponentiation.
Le mot-valise tétration a été forgé par Reuben Goodstein sur la base du préfixe tétra- (quatre) et itération. La tétration est utilisée pour l'écriture des grands nombres. Elle suit l'addition, la multiplication et l'exponentiation comme indiqué ci-après :
addition
multiplication
exponentiation
tétration
avec chaque fois b apparitions de la lettre a. La multiplication (a × b) peut être vue comme (b-1) itérations de l'opération "ajouter a", l'exponentiation (a) comme (b-1) itérations de l'opération "multiplier par a" donc b apparitions de la lettre a. De manière analogue, la tétration (a) peut être considérée comme (b-1) itérations de l'opération "élever à la puissance a".
On remarquera que lorsque l'on évalue une exponentiation à niveaux multiples, l'exponentiation est effectuée au niveau le plus « profond » en premier lieu (en notation, au niveau le plus élevé), c'est-à-dire de la droite vers la gauche. En d'autres termes :
n'est pas égal à .
Ceci est la règle générale pour l'ordre des opérations impliquant une exponentiation répétée.
Afin de généraliser le premier cas ci-dessus (calcul des puissances de la droite vers la gauche) de la tétration à des valeurs non entières, une nouvelle notation est nécessaire. Le second cas (calcul de la gauche vers la droite) peut être également écrit : , donc l'écriture de sa forme générale utilise toujours une notation d'exponentiation ordinaire.
Les notations dans lesquelles une tétration peut être notée (parmi celles permettant même des niveaux d'itérations plus élevés) incluent :
la notation standard : a, utilisée en premier lieu par Hans Maurer ; cette notation a été popularisée par le livre de Rudy Rucker, Infinity and the Mind.
la notation des puissances itérées de Knuth : — peut être étendue en utilisant plus de flèches (ou de manière équivalente, une flèche indexée).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
En mathématiques, la notation des puissances itérées de Knuth est une notation qui permet d'écrire de très grands entiers et qui a été introduite par Donald Knuth en 1976. L'idée de cette notation est fondée sur la notion d'exponentiation répétée, au même titre que l'exponentiation consiste en une multiplication itérée ou la multiplication en une addition itérée. vignette|Si une rangée de dominos représente un nombre, « incrémenter » ce nombre consiste à ajouter un domino.
La notation des flèches chaînées de Conway est une notation créée par le mathématicien John Horton Conway, permettant d'exprimer de très grands nombres. Elle consiste en une suite finie d'entiers positifs séparés par des flèches, comme Comme beaucoup d'autres expressions combinatoires, sa définition est récursive. Au bout du compte, elle revient à élever le nombre le plus à gauche à une puissance entière et généralement énorme.
En mathématiques, les hyperopérations (ou hyperopérateurs) constituent une suite infinie d'opérations qui prolonge logiquement la suite des opérations arithmétiques élémentaires suivantes : addition (n = 1) : multiplication (n = 2) : exponentiation (n = 3) : Reuben Goodstein proposa de baptiser les opérations au-delà de l'exponentiation en utilisant des préfixes grecs : tétration (n = 4), pentation (n = 5), hexation (n = 6), etc. L'hyperopération à l'ordre n peut se noter à l'aide d'une flèche de Knuth au rang n – 2.
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Couvre la théorie avancée du comptage, des probabilités et de l'information, y compris la résolution des relations de récurrence homogènes linéaires et des problèmes de contrôle de chapeaux.
In this thesis, we study the stochastic heat equation (SHE) on bounded domains and on the whole Euclidean space Rd. We confirm the intuition that as the bounded domain increases to the whole space, both solutions become arbitrarily close to one another ...
We establish a Chung-type law of the iterated logarithm and the exact local and uniform moduli of continuity for a large class of anisotropic Gaussian random fields with a harmonizable-type integral representation and the property of strong local nondeterm ...
We study the existence and propagation of singularities of the solution to a one-dimensional linear stochastic wave equation driven by an additive Gaussian noise that is white in time and colored in space. Our approach is based on a simultaneous law of the ...