Les paramètres cristallins, aussi appelés paramètres de maille, sont des grandeurs utilisées pour décrire la maille d'un cristal. On distingue trois longueurs (a, b, c) et trois angles (α, β, γ) qui déterminent entièrement le parallélépipède qu'est la maille, élémentaire ou multiple. Les paramètres a, b et c sont mesurés en ångströms (Å), en nanomètres (nm), parfois en picomètres, et α, β et γ en degrés (°). On utilise aussi l'expression constantes de réseau mais elle est malencontreuse car les paramètres cristallins d'un matériau ne sont pas constants mais varient, en particulier en fonction de la température, de la pression et de la présence de défauts ponctuels. Les paramètres de maille d'un cristal sont en général différents les uns des autres. Selon le système réticulaire du cristal, la symétrie du réseau peut imposer certaines égalités entre a, b et c et entre α, β et γ, ou pour ces angles des valeurs précises. Dans les systèmes de faible symétrie les paramètres peuvent prendre n'importe quelle valeur, y compris des valeurs correspondants à une symétrie plus élevée. Ce phénomène de symétrie métrique plus élevée que celle imposée par la symétrie du réseau se manifeste dans un intervalle de température et pression plus ou moins étroit. La détermination des paramètres de maille est la première étape pour déterminer la structure d'un cristal. Les méthodes utilisées sont : la microscopie à force atomique ; le plus souvent, la diffraction de rayons X, de neutrons ou d'électrons. Dans le cas de la diffraction, les quantités accessibles expérimentalement sont les intensités des réflexions, leurs positions et leurs largeurs de raie. Pour les mesures sur poudre, on obtient un diffractogramme linéaire, contenant les intensités en fonction de l'angle de diffraction θ. Plusieurs méthodes d' permettent de déterminer directement les paramètres de maille du cristal. Pour les mesures sur monocristal, à partir des positions des réflexions dans l'espace tridimensionnel, il est possible de déterminer les paramètres de maille et le réseau de Bravais du réseau réciproque ; les paramètres de maille du cristal sont calculés à partir de ceux du réseau réciproque.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
PHYS-433: Semiconductor physics and light-matter interaction
Lectures on the fundamental aspects of semiconductor physics and the main properties of the p-n junction that is at the heart of devices like LEDs & laser diodes. The last part deals with light-matter
MSE-484: Properties of semiconductors and related nanostructures
This course explains the origin of optical and electrical properties of semiconductors. The course elaborates how they change when the semiconductors are reduced to sizes of few nanometers. The course
Concepts associés (16)
Indices de Miller et indices de direction
Les indices de Miller ou de Miller-Bravais sont une manière de désigner l'orientation des plans cristallins dans un cristal. On utilise des indices similaires pour désigner les directions dans un cristal, les indices de direction. Un cristal est un empilement ordonné d'atomes, d'ions ou de molécules, appelés ci-après « motifs ». La périodicité du motif est exprimée par un réseau constitué de nœuds qui représentent les sommets de la maille. Les arêtes de la maille élémentaire définissent les vecteurs de la base.
Arséniure d'aluminium
L’arséniure d'aluminium (AlAs) est un composé chimique d'aluminium et d'arsenic. C'est un matériau semi-conducteur avec presque la même constante de réseau que GaAs et AlGaAs et une bande interdite plus large que GaAs. Il possède les propriétés suivantes : Coefficient de dilatation thermique : 5 μm/(°C*m) Température Debye : 417 K Microdureté : (charge de ) Nombre d'atomes dans : (4.42-0.17x)·1022 Module d'élasticité isostatique : 7.55+0.
Arséniure d'indium
L'arséniure d'indium, InAs, est un semi-conducteur composite binaire de type III-V, composé d'arsenic et d'indium. Il a l'apparence d'un cristal cubique, gris, avec un point de fusion de . L'arséniure d'indium est assez similaire à l'arséniure de gallium. Ses propriétés en sont assez proches, et comme celui-ci, il possède un gap direct. Il possède l'une des plus importantes mobilités d'électron parmi les semi-conducteurs, et son gap est l'un des plus petits. Il est toxique et dangereux pour l'environnement.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.