In mathematics, an affine root system is a root system of affine-linear functions on a Euclidean space. They are used in the classification of affine Lie algebras and superalgebras, and semisimple p-adic algebraic groups, and correspond to families of Macdonald polynomials. The reduced affine root systems were used by Kac and Moody in their work on Kac–Moody algebras. Possibly non-reduced affine root systems were introduced and classified by and (except that both these papers accidentally omitted the Dynkin diagram ). Let E be an affine space and V the vector space of its translations. Recall that V acts faithfully and transitively on E. In particular, if , then it is well defined an element in V denoted as which is the only element w such that . Now suppose we have a scalar product on V. This defines a metric on E as . Consider the vector space F of affine-linear functions . Having fixed a , every element in F can be written as with a linear function on V that doesn't depend on the choice of . Now the dual of V can be identified with V thanks to the chosen scalar product and we can define a product on F as . Set and for any and respectively. The identification let us define a reflection over E in the following way: By transposition acts also on F as An affine root system is a subset such that: The elements of S are called affine roots. Denote with the group generated by the with . We also ask This means that for any two compacts the elements of such that are a finite number. The affine roots systems A1 = B1 = B = C1 = C are the same, as are the pairs B2 = C2, B = C, and A3 = D3 The number of orbits given in the table is the number of orbits of simple roots under the Weyl group. In the Dynkin diagrams, the non-reduced simple roots α (with 2α a root) are colored green. The first Dynkin diagram in a series sometimes does not follow the same rule as the others. Rank 1: A1, BC1, (BC1, C1), (C, BC1), (C, C1). Rank 2: A2, C2, C, BC2, (BC2, C2), (C, BC2), (B2, B), (C, C2), G2, G. Rank 3: A3, B3, B, C3, C, BC3, (BC3, C3), (C, BC3), (B3, B), (C, C3).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.