In topology, a discipline within mathematics, an Urysohn space, or T21⁄2 space, is a topological space in which any two distinct points can be separated by closed neighborhoods. A completely Hausdorff space, or functionally Hausdorff space, is a topological space in which any two distinct points can be separated by a continuous function. These conditions are separation axioms that are somewhat stronger than the more familiar Hausdorff axiom T2.
Suppose that X is a topological space. Let x and y be points in X.
We say that x and y can be separated by closed neighborhoods if there exists a closed neighborhood U of x and a closed neighborhood V of y such that U and V are disjoint (U ∩ V = ∅). (Note that a "closed neighborhood of x" is a closed set that contains an open set containing x.)
We say that x and y can be separated by a function if there exists a continuous function f : X → [0,1] (the unit interval) with f(x) = 0 and f(y) = 1.
A Urysohn space, also called a T21⁄2 space, is a space in which any two distinct points can be separated by closed neighborhoods.
A completely Hausdorff space, or functionally Hausdorff space, is a space in which any two distinct points can be separated by a continuous function.
The study of separation axioms is notorious for conflicts with naming conventions used. The definitions used in this article are those given by Willard (1970) and are the more modern definitions. Steen and Seebach (1970) and various other authors reverse the definition of completely Hausdorff spaces and Urysohn spaces. Readers of textbooks in topology must be sure to check the definitions used by the author. See History of the separation axioms for more on this issue.
Any two points which can be separated by a function can be separated by closed neighborhoods. If they can be separated by closed neighborhoods then clearly they can be separated by neighborhoods. It follows that every completely Hausdorff space is Urysohn and every Urysohn space is Hausdorff.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
est un livre de mathématiques écrit en 1970 par les topologues Lynn Arthur Steen et J. Arthur Seebach, Jr.. Lors de leurs recherches sur des problèmes comme celui de la métrisabilité, des topologues (dont Steen et Seebach) ont défini nombre de propriétés topologiques. Il est souvent utile, pour comprendre des notions abstraites comme celles concernant les espaces topologiques, de savoir que telle propriété ne résulte pas de telle autre, la méthode la plus simple consistant à exhiber un contre-exemple.
The history of the separation axioms in general topology has been convoluted, with many meanings competing for the same terms and many terms competing for the same concept. Before the current general definition of topological space, there were many definitions offered, some of which assumed (what we now think of as) some separation axioms. For example, the definition given by Felix Hausdorff in 1914 is equivalent to the modern definition plus the Hausdorff separation axiom.
Couvre des courbes modulaires comme des surfaces compactes de Riemann, expliquant leur topologie, la construction de graphiques holomorphes et leurs propriétés.