Taille d'effetEn statistique, une taille d'effet est une mesure de la force de l'effet observé d'une variable sur une autre et plus généralement d'une inférence. La taille d'un effet est donc une grandeur statistique descriptive calculée à partir de données observées empiriquement afin de fournir un indice quantitatif de la force de la relation entre les variables et non une statistique inférentielle qui permettrait de conclure ou non si ladite relation observée dans les données existe bien dans la réalité.
Alternative hypothesisIn statistical hypothesis testing, the alternative hypothesis is one of the proposed proposition in the hypothesis test. In general the goal of hypothesis test is to demonstrate that in the given condition, there is sufficient evidence supporting the credibility of alternative hypothesis instead of the exclusive proposition in the test (null hypothesis). It is usually consistent with the research hypothesis because it is constructed from literature review, previous studies, etc.
T-statisticIn statistics, the t-statistic is the ratio of the departure of the estimated value of a parameter from its hypothesized value to its standard error. It is used in hypothesis testing via Student's t-test. The t-statistic is used in a t-test to determine whether to support or reject the null hypothesis. It is very similar to the z-score but with the difference that t-statistic is used when the sample size is small or the population standard deviation is unknown.
Signification statistiquevignette|statistique En statistiques, le résultat d'études qui portent sur des échantillons de population est dit statistiquement significatif lorsqu'il semble exprimer de façon fiable un fait auquel on s'intéresse, par exemple la différence entre 2 groupes ou une corrélation entre 2 données. Dit autrement, il est alors très peu probable que ce résultat apparent soit en fait trompeur s'il n'est pas dû, par exemple, à un , trop petit ou autrement non représentatif (surtout si la population est très diverse).
Hypothèse nulleEn statistiques et en économétrie, l'hypothèse nulle (symbole international : ) est une hypothèse postulant l'égalité entre des paramètres statistiques (généralement, la moyenne ou la variance) de deux échantillons dont elle fait l’hypothèse qu'ils sont pris sur des populations équivalentes. Elle est toujours testée contre une hypothèse alternative qui postule soit la différence des données (test bilatéral), soit une inégalité (plus petit que ou plus grand que) entre les données (test unilatéral).
Test statistiqueEn statistiques, un test, ou test d'hypothèse, est une procédure de décision entre deux hypothèses. Il s'agit d'une démarche consistant à rejeter ou à ne pas rejeter une hypothèse statistique, appelée hypothèse nulle, en fonction d'un échantillon de données. Il s'agit de statistique inférentielle : à partir de calculs réalisés sur des données observées, on émet des conclusions sur la population, en leur rattachant des risques d'être erronées. Hypothèse nulle L'hypothèse nulle notée H est celle que l'on considère vraie a priori.