Multiplicative groupIn mathematics and group theory, the term multiplicative group refers to one of the following concepts: the group under multiplication of the invertible elements of a field, ring, or other structure for which one of its operations is referred to as multiplication. In the case of a field F, the group is (F ∖ {0}, •), where 0 refers to the zero element of F and the binary operation • is the field multiplication, the algebraic torus GL(1).. The multiplicative group of integers modulo n is the group under multiplication of the invertible elements of .
Classe suivant un sous-groupeEn théorie des groupes, les classes à gauche d'un groupe G suivant un sous-groupe H sont les parties de G de la forme gH avec g élément de G, où gH désigne l'ensemble des éléments gh quand h parcourt H. Elles constituent les classes d'une relation d'équivalence sur G, donc forment une partition de G. On peut les voir aussi comme les orbites de l'action à droite de H sur G, par translations par les symétriques des éléments de H. L'ensemble des classes à gauche d'un groupe G suivant un sous-groupe H est noté G/H.