In coding theory, fountain codes (also known as rateless erasure codes) are a class of erasure codes with the property that a potentially limitless sequence of encoding symbols can be generated from a given set of source symbols such that the original source symbols can ideally be recovered from any subset of the encoding symbols of size equal to or only slightly larger than the number of source symbols. The term fountain or rateless refers to the fact that these codes do not exhibit a fixed code rate. A fountain code is optimal if the original k source symbols can be recovered from any k successfully received encoding symbols (i.e., excluding those that were erased). Fountain codes are known that have efficient encoding and decoding algorithms and that allow the recovery of the original k source symbols from any k’ of the encoding symbols with high probability, where k’ is just slightly larger than k. LT codes were the first practical realization of fountain codes. Raptor codes and online codes were subsequently introduced, and achieve linear time encoding and decoding complexity through a pre-coding stage of the input symbols. Fountain codes are flexibly applicable at a fixed code rate, or where a fixed code rate cannot be determined a priori, and where efficient encoding and decoding of large amounts of data is required. One example is that of a data carousel, where some large file is continuously broadcast to a set of receivers. Using a fixed-rate erasure code, a receiver missing a source symbol (due to a transmission error) faces the coupon collector's problem: it must successfully receive an encoding symbol which it does not already have. This problem becomes much more apparent when using a traditional short-length erasure code, as the file must be split into several blocks, each being separately encoded: the receiver must now collect the required number of missing encoding symbols for each block. Using a fountain code, it suffices for a receiver to retrieve any subset of encoding symbols of size slightly larger than the set of source symbols.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (5)
COM-102: Advanced information, computation, communication II
Text, sound, and images are examples of information sources stored in our computers and/or communicated over the Internet. How do we measure, compress, and protect the informatin they contain?
EE-543: Advanced wireless receivers
Students extend their knowledge on wireless communication systems to spread-spectrum communication and to multi-antenna systems. They also learn about the basic information theoretic concepts, about c
CS-308: Introduction to quantum computation
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
Afficher plus
Publications associées (122)
Concepts associés (5)
Code d'effacement
En théorie de l'information, un code d'effacement est un code de correction d'erreur directe pour le canal binaire d'effacement qui transforme un message composé de symboles en un message plus long composé de symboles tel que le message original peut être retrouvé à partir d'un sous-ensemble de ces symboles. La fraction est appelé « débit du code ». La fraction , où représente le nombre de symboles requis pour restaurer le message est appelée efficacité de la réception.
Error correction code
In computing, telecommunication, information theory, and coding theory, forward error correction (FEC) or channel coding is a technique used for controlling errors in data transmission over unreliable or noisy communication channels. The central idea is that the sender encodes the message in a redundant way, most often by using an error correction code or error correcting code (ECC). The redundancy allows the receiver not only to detect errors that may occur anywhere in the message, but often to correct a limited number of errors.
Codes de parité à faible densité
Dans la théorie de l'information, un contrôle de parité de faible densité LDPC est un code linéaire correcteur d'erreur, permettant la transmission d'information sur un canal de transmission bruité. LDPC est construit en utilisant un graphe biparti clairsemé. Les codes LDPC ont une capacité approchant la limite théorique. À l'aide de techniques itératives de propagation d'information sur la donnée transmise et à décoder, les codes LDPC peuvent être décodés en un temps proportionnel à leur longueur de bloc.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.