A non-monotonic logic is a formal logic whose conclusion relation is not monotonic. In other words, non-monotonic logics are devised to capture and represent defeasible inferences (cf. defeasible reasoning), i.e., a kind of inference in which reasoners draw tentative conclusions, enabling reasoners to retract their conclusion(s) based on further evidence.
Most studied formal logics have a monotonic entailment relation, meaning that adding a formula to a theory never produces a pruning of its set of conclusions. Intuitively, monotonicity indicates that learning a new piece of knowledge cannot reduce the set of what is known. A monotonic logic cannot handle various reasoning tasks such as reasoning by default (conclusions may be derived only because of lack of evidence of the contrary), abductive reasoning (conclusions are only deduced as most likely explanations), some important approaches to reasoning about knowledge (the ignorance of a conclusion must be retracted when the conclusion becomes known), and similarly, belief revision (new knowledge may contradict old beliefs).
Abductive reasoning is the process of deriving a sufficient explanation of the known facts. An abductive logic should not be monotonic because the likely explanations are not necessarily correct. For example, the likely explanation for seeing wet grass is that it rained; however, this explanation has to be retracted when learning that the real cause of the grass being wet was a sprinkler. Since the old explanation (it rained) is retracted because of the addition of a piece of knowledge (a sprinkler was active), any logic that models explanations is non-monotonic.
If a logic includes formulae that mean that something is not known, this logic should not be monotonic. Indeed, learning something that was previously not known leads to the removal of the formula specifying that this piece of knowledge is not known. This second change (a removal caused by an addition) violates the condition of monotonicity. A logic for reasoning about knowledge is the autoepistemic logic.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Introduction aux techniques de l'Intelligence Artificielle, complémentée par des exercices de programmation qui montrent les algorithmes et des exemples de leur application à des problèmes pratiques.
Explore le raisonnement incertain, les réseaux bayésiens et la résolution stochastique, soulignant l'importance de la logique probabiliste et de l'enlèvement.
La logique — du grec , qui est un terme dérivé de signifiant à la fois « raison », « langage » et « raisonnement » — est, dans une première approche, l'étude de l'inférence, c'est-à-dire des règles formelles que doit respecter toute argumentation correcte. Le terme aurait été utilisé pour la première fois par Xénocrate. La logique antique se décompose d'abord en dialectique et rhétorique. Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature).
La négation par l'échec (en anglais NAF pour negation as failure, ou NBF pour negation by failure) est une règle d'inférence non monotone en programmation logique, utilisée pour la dérivation de à partir de l'échec de la dérivation de . C'est une caractéristique importante de la programmation logique depuis les origines de Planner et de Prolog. En Prolog, la négation par l'échec est habituellement implémentée en utilisant les fonctionnalités non logiques du langage.
L’answer set programming (ASP) est une forme de programmation déclarative adaptée aux problèmes de recherche combinatoires (par exemple, sudoku et coloration de graphes). Dans le contexte de la programmation logique, cette approche distingue deux types de négation — la négation par manque d'information, dite négation par défaut, et la négation forte ou négation logique. La négation par défaut permet de raisonner en l'absence d'information et rend l'ASP non monotone.
The recent advance of large language models (LLMs) demonstrates that these large-scale foundation models achieve remarkable capabilities across a wide range of language tasks and domains. The success of the statistical learning approach challenges our unde ...
The popular isolation level multiversion Read Committed (RC) exchanges some of the strong guarantees of serializability for increased transaction throughput. Nevertheless, transaction workloads can sometimes be executed under RC while still guaranteeing se ...
ASSOC COMPUTING MACHINERY2023
, , ,
Explanation methods highlight the importance of the input features in taking a predictive decision, and represent a solution to increase the transparency and trustworthiness in machine learning and deep neural networks (DNNs). However, explanation methods ...