**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.

Concept# The Analyst

Résumé

The Analyst (subtitled A Discourse Addressed to an Infidel Mathematician: Wherein It Is Examined Whether the Object, Principles, and Inferences of the Modern Analysis Are More Distinctly Conceived, or More Evidently Deduced, Than Religious Mysteries and Points of Faith) is a book by George Berkeley. It was first published in 1734, first by J. Tonson (London), then by S. Fuller (Dublin). The "infidel mathematician" is believed to have been Edmond Halley, though others have speculated Sir Isaac Newton was intended.
From his earliest days as a writer, Berkeley had taken up his satirical pen to attack what were then called 'free-thinkers' (secularists, skeptics, agnostics, atheists, etc.—in short, anyone who doubted the truths of received Christian religion or called for a diminution of religion in public life). In 1732, in the latest installment in this effort, Berkeley published his Alciphron, a series of dialogues directed at different types of 'free-thinkers'. One of the archetypes Berkeley addressed was the secular scientist, who discarded Christian mysteries as unnecessary superstitions, and declared his confidence in the certainty of human reason and science. Against his arguments, Berkeley mounted a subtle defense of the validity and usefulness of these elements of the Christian faith.
Alciphron was widely read and caused a bit of a stir. But it was an offhand comment mocking Berkeley's arguments by the 'free-thinking' royal astronomer Sir Edmund Halley that prompted Berkeley to pick up his pen again and try a new tack. The result was The Analyst, conceived as a satire attacking the foundations of mathematics with the same vigor and style as 'free-thinkers' routinely attacked religious truths.
Berkeley sought to take mathematics apart, claimed to uncover numerous gaps in proof, attacked the use of infinitesimals, the diagonal of the unit square, the very existence of numbers, etc. The general point was not so much to mock mathematics or mathematicians, but rather to show that mathematicians, like Christians, relied upon incomprehensible 'mysteries' in the foundations of their reasoning.

Source officielle

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés (13)

Publications associées (2)

Séances de cours associées (5)

Differential (mathematics)

In mathematics, differential refers to several related notions derived from the early days of calculus, put on a rigorous footing, such as infinitesimal differences and the derivatives of functions. The term is used in various branches of mathematics such as calculus, differential geometry, algebraic geometry and algebraic topology. The term differential is used nonrigorously in calculus to refer to an infinitesimal ("infinitely small") change in some varying quantity.

Limite (mathématiques)

En analyse mathématique, la notion de limite décrit l’approximation des valeurs d'une suite lorsque l'indice tend vers l’infini, ou d'une fonction lorsque la variable se rapproche d’un point (éventuellement infini) au bord du domaine de définition. Si une telle limite existe dans l’ensemble d’arrivée, on dit que la suite ou la fonction est convergente (au point étudié). Si ce n’est pas le cas, elle est divergente, comme dans le cas de suites et fonctions périodiques non constantes (telle la fonction sinus en +∞).

Fluxion

A fluxion is the instantaneous rate of change, or gradient, of a fluent (a time-varying quantity, or function) at a given point. Fluxions were introduced by Isaac Newton to describe his form of a time derivative (a derivative with respect to time). Newton introduced the concept in 1665 and detailed them in his mathematical treatise, Method of Fluxions. Fluxions and fluents made up Newton's early calculus. Fluxions were central to the Leibniz–Newton calculus controversy, when Newton sent a letter to Gottfried Wilhelm Leibniz explaining them, but concealing his words in code due to his suspicion.

Calcul des variations : Euler's Elastica

Couvre l'Elastica d'Euler et la forme d'équilibre d'un faisceau courbé à l'aide de méthodes de variation/énergie.

This work is devoted to rigorous results about the adiabatic theorem of quantum mechanics. This theorem deals with the time dependent Schrödinger equation when the hamiltonian is a slowly varying function of time, characterizing the so-called adiabatic reg ...

Wearable systems embodied as patches could offer noninvasive and real-time solutions for monitoring of biomarkers in human sweat as an alternative to blood testing, with applications in personalized and preventive healthcare. Sweat is considered to be a bi ...