Résumé
In mathematics, differential refers to several related notions derived from the early days of calculus, put on a rigorous footing, such as infinitesimal differences and the derivatives of functions. The term is used in various branches of mathematics such as calculus, differential geometry, algebraic geometry and algebraic topology. The term differential is used nonrigorously in calculus to refer to an infinitesimal ("infinitely small") change in some varying quantity. For example, if x is a variable, then a change in the value of x is often denoted Δx (pronounced delta x). The differential dx represents an infinitely small change in the variable x. The idea of an infinitely small or infinitely slow change is, intuitively, extremely useful, and there are a number of ways to make the notion mathematically precise. Using calculus, it is possible to relate the infinitely small changes of various variables to each other mathematically using derivatives. If y is a function of x, then the differential dy of y is related to dx by the formula where denotes the derivative of y with respect to x. This formula summarizes the intuitive idea that the derivative of y with respect to x is the limit of the ratio of differences Δy/Δx as Δx becomes infinitesimal. In calculus, the differential represents a change in the linearization of a function. The total differential is its generalization for functions of multiple variables. In traditional approaches to calculus, the differentials (e.g. dx, dy, dt, etc.) are interpreted as infinitesimals. There are several methods of defining infinitesimals rigorously, but it is sufficient to say that an infinitesimal number is smaller in absolute value than any positive real number, just as an infinitely large number is larger than any real number. The differential is another name for the Jacobian matrix of partial derivatives of a function from Rn to Rm (especially when this matrix is viewed as a linear map). More generally, the differential or pushforward refers to the derivative of a map between smooth manifolds and the pushforward operations it defines.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.