Modèle rubanLe modèle ruban est une modélisation moléculaire de la structures des protéines. Un ruban permet de visualisr des éléments de la structure secondaire comme une hélice alpha ou un feuillet bêta et permet de représenter la structure tertiaire. Les divers peptides peuvent être distingués par des couleurs. Les modèles ruban sont utilisés en modélisation moléculaire par exemple en . Le modèle a été établi par Jane Richardson en 1980/1981. thumb|Glyoxalase.
Diffusion des rayons XLa diffusion des rayons X (X-ray scattering en anglais) est une technique d'analyse basée sur la diffusion des ondes de rayons X par une substance. Alors que la diffraction des rayons X ne peut être utilisée qu'avec des substances cristallines, la diffusion des rayons X peut être utilisée pour des substances cristallines ou amorphes. La diffusion des rayons X est basée sur l'interaction des rayons X avec les électrons des atomes. La diffusion des rayons X peut être élastique ou inélastique.
Formule de ScherrerLa formule de Scherrer, ou relation de Laue-Scherrer, est une formule utilisée en diffraction X sur des poudres ou échantillons polycristallins. Elle relie la largeur des pics de diffraction — ou des anneaux de Debye-Scherrer — à la taille des cristallites. Si t est la taille du cristallite (son diamètre si on l'estime sphérique), ε est la largeur intégrale d'un pic, λ est la longueur d'onde de l'onde incidente et θ est la moitié de la déviation de l'onde (la moitié de la position du pic sur le diffractogramme), alors la formule de Scherrer s'écrit : En pratique, on utilise souvent la largeur à mi-hauteur H du pic ; il faut donc corriger la largeur par un facteur k.
IlliteL’illite est le nom d'un groupe de minéraux argileux non gonflants. Les illites sont composées de trois couches de phyllosilicates, une couche d'aluminium (Al) entourée de deux couches de silicate (Si). Elles sont structurellement très proches des micas (muscovite, biotite) et d'autres silicates (feldspath, feldspathoïdes, orthose et autres) dont elles sont issues par bisiallitisation, réaction ayant lieu lors de l'attaque de l'eau dans certaines conditions de température et de pression : orthose + H2O → illite + silice + ion potassium ou, plus précisément : 5 KAlSi3O8 + 20 H2O → 4 K+ + 8 Si(OH)4 + illite + 4 (OH−) Sa formule chimique est (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)] Le nom Illite vient de l'État américain de l'Illinois, où l'illite a été décrite pour la première fois en 1937.
Empilement Pidroite|vignette| Trois conformations du dimère de benzène En chimie, l' empilement pi (également appelé empilement π – π ) fait référence à des interactions attractives et non-covalentes entre les cycles aromatiques, car ils contiennent des liaisons pi . Ces interactions sont importantes dans l'empilement de nucléobases dans les molécules d' ADN et d' ARN, le repliement des protéines, la synthèse dirigée par matrice, la science des matériaux et la reconnaissance moléculaire, bien que certaines recherches suggèrent que l'empilement pi peut ne pas être opérationnel dans certaines de ces applications.
Sel de ZeiseLe sel de Zeise, ou trichloro(éthène)platinate(II) de potassium, est un composé chimique de formule K[PtCl3(C2H4)]•. L'anion associé, jaune, est stable à l'air. Cet anion met en jeu un atome de platine dans une géométrie plan carré. Ce sel a une importance historique dans le domaine de la chimie organométallique en tant qu'un des premiers exemples de complexe avec un alcène jouant le rôle de ligand. Ce composé est commercialisé en tant qu'hydrate.
Composé sandwichvignette|Modélisation 3D du ferrocène, montrant sa conformation décalée. En chimie organométallique, un composé sandwich est un composé chimique comportant un métal lié par liaisons haptiques à deux ligands arène () substitués (par exemple ) ou dérivé hétérocyclique (par exemple ). On parle de composé « sandwich » car le métal est généralement situé entre les cycles, comme la garniture d'un sandwich. Une sous-classe importante de complexes sandwich sont les métallocènes.
Tube à rayons XLes tubes à rayons X sont des dispositifs permettant de produire des rayons X, en général pour trois types d'applications : radiographie et tomographie (, science des matériaux) ; Cristallographie aux rayons X (diffraction de rayons X, voir aussi l'article Diffractomètre) ; analyse chimique élémentaire par spectrométrie de fluorescence des rayons X. Il existe plusieurs types de tubes. Quel que soit le type de tube, la génération des rayons X se fait selon le même principe.
Laser à électrons libresUn laser à électrons libres (en free electron laser : FEL) est un type de laser qui fonctionne en utilisant des électrons qui ne sont pas liés à un atome, d’où l'adjectif « libres », pour créer des photons. La lumière produite est à la fois cohérente, intense et peut avoir une longueur d'onde située dans une large gamme, depuis les micro-ondes jusqu'aux rayons X durs, en passant par l'ultra-violet, le domaine visible et l'infrarouge. Les lasers à électrons libres ont été suggérés en 1971 par le physicien John M.
Spectrométrie d'absorption des rayons XLa spectrométrie d'absorption des rayons X est une spectrométrie d'absorption qui aide à déterminer la structure d'un matériau. Elle a l'avantage d'être sélective quant à l'espèce atomique observée. Au début du siècle, la technique de spectroscopie d’absorption des rayons X (XAS) (SAX) n’était pas assez avancée pour représenter le futur de la science. Son avancement est surtout dû à des chercheurs avec énormément de motivation, mais n’ayant pas les capacités d’expliquer la théorie derrière un phénomène.