Quantum circuitIn quantum information theory, a quantum circuit is a model for quantum computation, similar to classical circuits, in which a computation is a sequence of quantum gates, measurements, initializations of qubits to known values, and possibly other actions. The minimum set of actions that a circuit needs to be able to perform on the qubits to enable quantum computation is known as DiVincenzo's criteria. Circuits are written such that the horizontal axis is time, starting at the left hand side and ending at the right.
Porte quantiqueEn informatique quantique, et plus précisément dans le modèle de de calcul, une porte quantique (ou porte logique quantique) est un circuit quantique élémentaire opérant sur un petit nombre de qubits. Les portes quantiques sont les briques de base des circuits quantiques, comme le sont les portes logiques classiques pour des circuits numériques classiques. Contrairement à de nombreuses portes logiques classiques, les portes logiques quantique sont « réversibles ».
Calcul réversibleLe calcul réversible est un domaine de l'informatique qui s'intéresse au fait de pouvoir inverser (physiquement ou logiquement) un calcul. Il s'agit d'un domaine transversal, qui a des applications allant de l'architecture matérielle à l'algorithmique répartie en passant par le calcul quantique. D'un point de vue physique, cela implique que ce calcul n'implique pas de phénomène dissipatif conduisant à une augmentation de l'entropie ; bien qu'il soit physiquement impossible d'atteindre cet objectif du fait du second principe de la thermodynamique, s'en rapprocher permet l'augmentation de l'efficacité des processeurs.
Controlled NOT gateIn computer science, the controlled NOT gate (also C-NOT or CNOT), controlled-X gate, controlled-bit-flip gate, Feynman gate or controlled Pauli-X is a quantum logic gate that is an essential component in the construction of a gate-based quantum computer. It can be used to entangle and disentangle Bell states. Any quantum circuit can be simulated to an arbitrary degree of accuracy using a combination of CNOT gates and single qubit rotations. The gate is sometimes named after Richard Feynman who developed an early notation for quantum gate diagrams in 1986.
Functional completenessIn logic, a functionally complete set of logical connectives or Boolean operators is one which can be used to express all possible truth tables by combining members of the set into a Boolean expression. A well-known complete set of connectives is { AND, NOT }. Each of the singleton sets { NAND } and { NOR } is functionally complete. However, the set { AND, OR } is incomplete, due to its inability to express NOT. A gate or set of gates which is functionally complete can also be called a universal gate / gates.
Ancilla bitIn reversible computing, ancilla bits are extra bits being used to implement irreversible logical operations. In classical computation, any memory bit can be turned on or off at will, requiring no prior knowledge or extra complexity. However, this is not the case in quantum computing or classical reversible computing. In these models of computing, all operations on computer memory must be reversible, and toggling a bit on or off would lose the information about the initial value of that bit.