Nombre réelEn mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Groupe archimédienUn groupe archimédien est, en algèbre générale, un groupe totalement ordonné vérifiant la propriété d'Archimède, à savoir: pour toute paire d'éléments positifs du groupe, on peut majorer l'un par un multiple entier de l'autre. Par exemple, l'ensemble R des nombres réels muni de l'addition et de la relation d'ordre usuelle est un groupe archimédien. Le terme d'archimédien, popularisé par le mathématicien Otto Stolz, fait référence au mathématicien grec Archimède qui énonce cette propriété dans ses travaux.
Cyclic orderIn mathematics, a cyclic order is a way to arrange a set of objects in a circle. Unlike most structures in order theory, a cyclic order is not modeled as a binary relation, such as "a < b". One does not say that east is "more clockwise" than west. Instead, a cyclic order is defined as a ternary relation [a, b, c], meaning "after a, one reaches b before c". For example, [June, October, February], but not [June, February, October], cf. picture. A ternary relation is called a cyclic order if it is cyclic, asymmetric, transitive, and connected.
ArchimédienÀ l'origine, l'énoncé de l'axiome d'Archimède est le suivant : « Pour deux grandeurs inégales, il existe toujours un multiple entier de la plus petite, supérieur à la plus grande. » Une structure algébrique est dite archimédienne si ses éléments vérifient une telle propriété. Intuitivement, la propriété d'Archimède indique que pour deux valeurs, la plus grande pourra toujours être mesurée à l'aune de la plus petite : en ajoutant un nombre fini de fois la plus petite valeur, on finira toujours par dépasser la plus grande.