Couvre les Perceptrons multicouches, les neurones artificiels, les fonctions d'activation, la notation matricielle, la flexibilité, la régularisation, la régression et les tâches de classification.
Explore l'histoire, les modèles, la formation, la convergence et les limites des réseaux neuronaux, y compris l'algorithme de rétropropagation et l'approximation universelle.
Couvre les fondamentaux des réseaux neuronaux multicouches et de l'apprentissage profond, y compris la propagation arrière et les architectures réseau comme LeNet, AlexNet et VGG-16.
Explore l'informatique scientifique en neuroscience, en mettant l'accent sur la simulation des neurones et des réseaux à l'aide d'outils comme NEURON, NEST et BRIAN.