Topological orderIn physics, topological order is a kind of order in the zero-temperature phase of matter (also known as quantum matter). Macroscopically, topological order is defined and described by robust ground state degeneracy and quantized non-Abelian geometric phases of degenerate ground states. Microscopically, topological orders correspond to patterns of long-range quantum entanglement. States with different topological orders (or different patterns of long range entanglements) cannot change into each other without a phase transition.
Topological quantum field theoryIn gauge theory and mathematical physics, a topological quantum field theory (or topological field theory or TQFT) is a quantum field theory which computes topological invariants. Although TQFTs were invented by physicists, they are also of mathematical interest, being related to, among other things, knot theory and the theory of four-manifolds in algebraic topology, and to the theory of moduli spaces in algebraic geometry. Donaldson, Jones, Witten, and Kontsevich have all won Fields Medals for mathematical work related to topological field theory.
Sigma modelIn physics, a sigma model is a field theory that describes the field as a point particle confined to move on a fixed manifold. This manifold can be taken to be any Riemannian manifold, although it is most commonly taken to be either a Lie group or a symmetric space. The model may or may not be quantized. An example of the non-quantized version is the Skyrme model; it cannot be quantized due to non-linearities of power greater than 4. In general, sigma models admit (classical) topological soliton solutions, for example, the Skyrmion for the Skyrme model.
Topological quantum numberIn physics, a topological quantum number (also called topological charge) is any quantity, in a physical theory, that takes on only one of a discrete set of values, due to topological considerations. Most commonly, topological quantum numbers are topological invariants associated with topological defects or soliton-type solutions of some set of differential equations modeling a physical system, as the solitons themselves owe their stability to topological considerations.
Macroscopic quantum phenomenaMacroscopic quantum phenomena are processes showing quantum behavior at the macroscopic scale, rather than at the atomic scale where quantum effects are prevalent. The best-known examples of macroscopic quantum phenomena are superfluidity and superconductivity; other examples include the quantum Hall effect and topological order. Since 2000 there has been extensive experimental work on quantum gases, particularly Bose–Einstein condensates. Between 1996 and 2016 six Nobel Prizes were given for work related to macroscopic quantum phenomena.
SolitonUn soliton est une onde solitaire qui se propage sans se déformer dans un milieu non linéaire et dispersif. On en trouve dans de nombreux phénomènes physiques de même qu'ils sont la solution de nombreuses équations aux dérivées partielles non linéaires. thumb|Soliton hydrodynamique. Le phénomène associé a été observé pour la première fois en 1834 par l'Écossais John Scott Russell qui l'a observé initialement en se promenant le long d'un canal : il a suivi pendant plusieurs kilomètres une vague remontant le courant qui ne semblait pas vouloir faiblir.
SkyrmionLe skyrmion est une particule théorisée en 1962 par le physicien britannique Tony Skyrme et dont la découverte a été annoncée en 2009 par des physiciens de l'Université technique de Munich. Son antiparticule est l'antiskyrmion. Un skyrmion est une superposition quantique de baryons et d'états de résonance, ou plus simplement un vortex ou tourbillon de spin sur une surface, qui peut être créé par la pointe d'un microscope à effet tunnel. C'est sous la forme du vortex de spin que les physiciens allemands ont fait leur découverte.
Théorie des cordes topologiquesEn physique théorique, la théorie des cordes topologiques est une version simplifiée de la théorie des supercordes où seule la topologie de la feuille d’univers (i.e. la surface générée par l’évolution temporelle de la corde) entre en compte dans le calcul de la . La théorie des cordes topologiques correspond au cas où la théorie conforme couplée à la gravité est un modèle sigma non linéaire en deux dimensions dont l’espace-cible est une variété de Calabi-Yau.
Lagrangien (théorie des champs)La théorie lagrangienne des champs est un formalisme de la théorie classique des champs. C'est l'analogue de la théorie des champs de la mécanique lagrangienne. La mécanique lagrangienne est utilisée pour analyser le mouvement d'un système de particules discrètes chacune ayant un nombre fini de degrés de liberté. La théorie lagrangienne des champs s'applique aux continus et aux champs, qui ont un nombre infini de degrés de liberté.
SuperfluiditéLa superfluidité est un état de la matière dans lequel celle-ci se comporte comme un fluide dépourvu de toute viscosité. Découverte en 1937 par Piotr Kapitsa, simultanément avec, semble-t-il, John F. Allen et A. Don Misener, elle a d'abord été décrite comme une propriété de l'hélium (à très basse température) lui permettant de s'écouler à travers des canaux capillaires ou des fentes étroites sans viscosité.