Tenseur de RicciDans le cadre de la relativité générale, le champ de gravitation est interprété comme une déformation de l'espace-temps. Celle-ci est exprimée à l'aide du tenseur de Ricci. Le tenseur de Ricci est un champ tensoriel d'ordre 2, obtenu comme la trace du tenseur de courbure complet. On peut le considérer comme le laplacien du tenseur métrique riemannien dans le cas des variétés riemaniennes. Le tenseur de Ricci occupe une place importante notamment dans l'équation d'Einstein, équation principale de la relativité générale.
Divergence (analyse vectorielle)vignette|Les lignes bleues représentant les gradients de couleur, du plus clair au plus foncé. L'opérateur divergence permet de calculer, localement, la variation de ce gradient de couleur vignette|Illustration de la divergence d'un champ vectoriel, ici champ de vitesse converge à gauche et diverge à droite. En géométrie, la divergence d'un champ de vecteurs est un opérateur différentiel mesurant le défaut de conservation du volume sous l'action du flot de ce champ.