Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les champs d'application, les lambdas et les pandas en science des données avec Python, y compris les déclarations imbriquées, la détermination de la portée, les affectations et la manipulation des pandas.
Explore les fondamentaux de régression logistique, y compris les fonctions de coût, la régularisation et les limites de classification, avec des exemples pratiques utilisant scikit-learn.
Introduit des concepts fondamentaux d'apprentissage automatique, couvrant la régression, la classification, la réduction de dimensionnalité et des modèles générateurs profonds.
Explore les bases du cache CMP, la mémoire transactionnelle, les transactions en vol, le mécanisme de débordement du cache et la réplication des victimes.
Introduit LabVIEW pour le traitement et la visualisation des données, couvrant des sujets tels que la synchronisation des formes d'onde et les tables de recherche couleur.