Local volatilityA local volatility model, in mathematical finance and financial engineering, is an option pricing model that treats volatility as a function of both the current asset level and of time . As such, it is a generalisation of the Black–Scholes model, where the volatility is a constant (i.e. a trivial function of and ). Local volatility models are often compared with stochastic volatility models, where the instantaneous volatility is not just a function of the asset level but depends also on a new "global" randomness coming from an additional random component.
PutLe put ou l'option de vente est une option contractuelle de vente par laquelle deux parties s'accordent pour échanger un actif (appelé sous-jacent) à un prix fixé (appelé prix d'exercice ou strike) à une date prédéterminée (dite date de maturité). Une partie, l'acheteur du put, a le droit (non l'obligation) de vendre l'actif sous-jacent au prix d'exercice dans les délais spécifiés tandis que l'autre partie, le vendeur du put, a l'obligation de racheter cet actif au prix d'exercice si l'acheteur décide d'exercer l'option.
Option styleIn finance, the style or family of an option is the class into which the option falls, usually defined by the dates on which the option may be exercised. The vast majority of options are either European or American (style) options. These options—as well as others where the payoff is calculated similarly—are referred to as "vanilla options". Options where the payoff is calculated differently are categorized as "exotic options". Exotic options can pose challenging problems in valuation and hedging.
Finite difference methods for option pricingFinite difference methods for option pricing are numerical methods used in mathematical finance for the valuation of options. Finite difference methods were first applied to option pricing by Eduardo Schwartz in 1977. In general, finite difference methods are used to price options by approximating the (continuous-time) differential equation that describes how an option price evolves over time by a set of (discrete-time) difference equations. The discrete difference equations may then be solved iteratively to calculate a price for the option.
Volatilité stochastiqueLa volatilité stochastique est utilisée dans le cadre de la finance quantitative, pour évaluer des produits dérivés, tels que des options. Le nom provient du fait que le modèle traite la volatilité du sous-jacent comme un processus aléatoire, fonction de variables d'états telles que le prix du sous-jacent, la tendance qu'a la volatilité, à moyen terme, à faire revenir le prix vers une valeur moyenne, la variance du processus de la volatilité, etc.
Volatility smileVolatility smiles are implied volatility patterns that arise in pricing financial options. It is a parameter (implied volatility) that is needed to be modified for the Black–Scholes formula to fit market prices. In particular for a given expiration, options whose strike price differs substantially from the underlying asset's price command higher prices (and thus implied volatilities) than what is suggested by standard option pricing models. These options are said to be either deep in-the-money or out-of-the-money.
Taux sans risqueUn taux sans risque dans une devise et pour une période particulière est le taux d'intérêt constaté sur le marché des emprunts d'État de pays considérés solvables et d'organisations intergouvernementales pour la même devise et la même période. On désigne donc ainsi l'absence théorique de risque de crédit, et non une quelconque absence de risque de taux, qui lui demeure bien présent. Il est toutefois à noter qu'un État peut faire faillite. Comme pour tous les taux d'intérêt, il convient de préciser quelles bases et conventions de calcul s'appliquent.
Option-adjusted spreadOption-adjusted spread (OAS) is the yield spread which has to be added to a benchmark yield curve to discount a security's payments to match its market price, using a dynamic pricing model that accounts for embedded options. OAS is hence model-dependent. This concept can be applied to a mortgage-backed security (MBS), or another bond with embedded options, or any other interest rate derivative or option. More loosely, the OAS of a security can be interpreted as its "expected outperformance" versus the benchmarks, if the cash flows and the yield curve behave consistently with the valuation model.
Option time valueIn finance, the time value (TV) (extrinsic or instrumental value) of an option is the premium a rational investor would pay over its current exercise value (intrinsic value), based on the probability it will increase in value before expiry. For an American option this value is always greater than zero in a fair market, thus an option is always worth more than its current exercise value. As an option can be thought of as 'price insurance' (e.g.