Concept

Covalent bond classification method

Résumé
The covalent bond classification (CBC) method is also referred to as the LXZ notation. It was published by M. L. H. Green in 1995 as a solution for the need to describe covalent compounds such as organometallic complexes in a way that is not prone to limitations resulting from the definition of oxidation state. Instead of simply assigning a charge to an atom in the molecule (i.e. the oxidation state), the covalent bond classification method analyzes the nature of the ligands surrounding the atom of interest, which is often a transition metal. According to this method, there are three basic types of interactions that allow for coordination of the ligand. The three types of interaction are classified according to whether the ligating group donates two, one, or zero electrons. These three classes of ligands are respectively given the symbols L, X, and Z. X-type ligands are those that donate one electron to the metal and accept one electron from the metal when using the neutral ligand method of electron counting, or donate two electrons to the metal when using the donor pair method of electron counting. Regardless of whether it is considered neutral or anionic, these ligands yield normal covalent bonds.[3] A few examples of this type of ligand are H, halogens (Cl, Br, F, etc.), OH, CN, CH3, and NO (bent). L-type ligands are neutral ligands that donate two electrons to the metal center regardless of the electron counting method being used. These electrons can come from lone pairs, pi, or sigma donors.[4] The bonds formed between these ligands and the metal are dative covalent bonds, which are also known as coordinate bonds. Examples of this type of ligand include CO, PR3, NH3, H2O, carbenes (=CRR'), and alkenes. Z-type ligands are those that accept two electrons from the metal center as opposed to the donation occurring with the other two types of ligands. However, these ligands also form dative covalent bonds like the L-type.[3] This type of ligand is not usually used, because in certain situations it can be written in terms of L and X.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.