En géométrie, les points de Napoléon sont deux points remarquables du triangle plan. Leur nom vient de l'empereur Napoléon Bonaparte, qui les aurait découverts bien que ceci puisse être remis en question. Ils font partie des éléments remarquables d'un triangle et sont listés aux numéros X(17) et X(18) par Clark Kimberling. 300px|right|thumb|Construction du premier point de Napoléon Soit ABC un triangle plan. On construit à partir des côtés BC, CA, AB, les triangles équilatéraux extérieurs A"BC, B"CA et C"AB respectivement. On note les centres de gravité de ces triangles A', B' et C' respectivement. Alors A'A, B'B et C'C sont concourantes au point noté K, qui est le premier point de Napoléon, ou point de Napoléon extérieur, du triangle ABC. Le triangle A'B'C''' est appelé le triangle de Napoléon extérieur du triangle ABC. Le théorème de Napoléon permet d'affirmer que ce triangle est équilatéral. Le nombre de Kimberling du premier point de Napoléon est X(17). les coordonnées trilinéaires de K : les coordonnées barycentriques de K sont : 300px|right|thumb|Construction du second point de Napoléon Soit ABC un triangle plan. On construit à partir des côtés BC, CA, AB, les triangles équilatéraux intérieurs A"BC, B"CA et C"AB respectivement. On note les centres de gravité de ces triangles A', B' et C' respectivement. Alors A'A, B'B et C'C sont concourantes au point noté K, qui est le second point de Napoléon, ou point de Napoléon intérieur, du triangle ABC. Le triangle A'B'C' est appelé le triangle de Napoléon intérieur du triangle ABC. Le théorème de Napoléon permet d'affirmer que ce triangle est équilatéral. Le nombre de Kimberling du second point de Napoléon est X(18). les coordonnées trilinéaires de K sont : les coordonnées barycentriques de K sont : On peut rapprocher les points de Napoléon des points de Fermat-Torricelli (X(13) et X(14)). En effet, si au lieu de construire les lignes rejoignant les sommets du triangle aux centres de gravité des triangles équilatéraux extérieurs, on construit les lignes rejoignant les sommets du triangle aux sommets extérieurs de ces triangles équilatéraux, ces trois lignes sont concourantes et ces points d'intersection sont les points de Fermat-Torricelli.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.