Icositétraèdre trapézoïdalL'icositétraèdre trapézoïdal ou deltoïdal est un solide de Catalan ressemblant un peu à un cube gonflé de l'intérieur. C'est le polyèdre dual du petit rhombicuboctaèdre. Il est topologiquement équivalent à l'intersection de 4 cylindres de même diamètre, chacun des axes passant par deux sommets opposés d'un cube. Les 24 faces sont des cerfs-volants et non des trapèzes ; l'hexacontaèdre trapézoïdal et les trapèzoèdres sont également mal nommés de manière similaire.
IcosidodécaèdreLe solide d'Archimède de vingt faces triangulaires et douze faces pentagonales s’appelle un icosidodécaèdre. Le mot “icosidodécaèdre” commence par “icos”, qui signifie “vingt”, soit le nombre de faces du solide de Platon de douze sommets, qui est le dual du “dodécaèdre” de Platon, dont les douze faces sont pentagonales. Cette image‐ci montre l’icosidodécaèdre de face et de dessus, avec deux faces triangulaires horizontales. De dessus le contour est un dodécagone, qui entoure dix triangles et six pentagones.
Hexacontaèdre trapézoïdalEn géométrie, l'hexacontaèdre trapézoïdal, qualifié aussi de deltoïdal ou strombique, est un polyèdre dont les 60 faces sont des cerfs-volants convexes. Solide de Catalan, il est le dual du petit rhombicosidodécaèdre. Comme cinq autres solides de Catalan, il n'y a pas de cycle hamiltonien passant par tous ses sommets. Il est topologiquement équivalent à l'intersection de 6 cylindres de mêmes diamètres, chacun des axes passant par deux sommets opposés d'un icosaèdre régulier.
Antiprisme carréEn géométrie, l'antiprisme carré est le deuxième solide de l'ensemble infini des antiprismes. Celui-ci peut être regardé comme un prisme carré droit dont on a opéré une fraction de tour sur une des deux faces carrées supérieure ou inférieure pour faire un sommet avec le milieu de l'arête correspondante. Ce qui a pour résultat une suite de triangles en nombre pair sur les côtés, et deux faces carrées supérieure et inférieure. Si toutes ses faces sont régulières, c'est un polyèdre semi-régulier.
Hexaki-icosaèdreUn hexaki-icosaèdre est un polyèdre à 120 faces, qui sont des triangles scalènes. Il est parfois appelé hexakis icosaèdre, hexa-icosaèdre ou, plus rarement, disdyakis triacontaèdre (par imitation de l'anglais). Le préfixe hexaki-, d'origine grecque, signifie « 6 fois » et fait référence au nombre de faces : 6 fois les 20 faces de l'icosaèdre. L'hexaki-icosaèdre régulier est un solide de Catalan, puisqu'il est le dual de l'icosidodécaèdre tronqué, solide d'Archimède.
DeltaèdreUn deltaèdre est un polyèdre dont toutes les faces sont des triangles équilatéraux. Le nom est issu de la lettre majuscule du grec delta (Δ), qui a la forme d'un triangle. Il existe une infinité de deltaèdres, mais de ceux-ci, seuls huit sont convexes, ayant quatre, six, huit, dix, douze, quatorze, seize et vingt faces. Le nombre de faces, arêtes et sommets est listé ci-dessous pour chacun des huit deltaèdres convexes. Les deltaèdre ne doivent pas être confondus avec les deltoèdres (épelé avec un "o"), les polyèdres dont les faces sont des cerfs-volants.
Pavage pentagonalvignette|Les quinze pavages pentagonaux isoédraux possibles. Un pavage pentagonal est, en géométrie, un pavage du plan euclidien par des pentagones. Un pavage du plan uniquement avec des pentagones réguliers n'est pas possible, car l'angle interne du pentagone (108°) ne divise pas un tour complet (360°). En revanche, on peut considérer le dodécaèdre régulier comme un pavage de la sphère par des pentagones réguliers. On connait quinze types de pavages pentagonaux, c'est-à-dire employant un même type de tuile pentagonale convexe.
Grand icosidodécaèdre adouciEn géométrie, le grand icosidodécaèdre adouci est un polyèdre uniforme non convexe, indexé sous le nom U57. Ce polyèdre peut être considéré comme un grand icosaèdre adouci. Les coordonnées cartésiennes des sommets d'un grand icosidodécaèdre adouci centré à l'origine sont les permutations paires de (±2α, ±2, ±2β), (±(α−βτ−1/τ), ±(α/τ+β−τ), ±(−ατ−β/τ−1)), (±(ατ−β/τ+1), ±(−α−βτ+1/τ), ±(−α/τ+β+τ)), (±(ατ−β/τ−1), ±(α+βτ+1/τ), ±(−α/τ+β−τ)) et (±(α−βτ+1/τ), ±(−α/τ−β−τ), ±(−ατ−β/τ+1)), avec un nombre pair de signes plus, où α = ξ−1/ξ et β = −ξ/τ+1/τ2−1/(ξτ), où τ = (1+√5)/2 est le nombre d'or (quelquefois écrit φ) et ξ est la solution réelle négative de ξ3−2ξ=−1/τ, ou approximativement −1,5488772.
Truncated order-7 triangular tilingIn geometry, the order-7 truncated triangular tiling, sometimes called the hyperbolic soccerball, is a semiregular tiling of the hyperbolic plane. There are two hexagons and one heptagon on each vertex, forming a pattern similar to a conventional soccer ball (truncated icosahedron) with heptagons in place of pentagons. It has Schläfli symbol of t{3,7}. This tiling is called a hyperbolic soccerball (football) for its similarity to the truncated icosahedron pattern used on soccer balls.