In graph theory, Turán's theorem bounds the number of edges that can be included in an undirected graph that does not have a complete subgraph of a given size. It is one of the central results of extremal graph theory, an area studying the largest or smallest graphs with given properties, and is a special case of the forbidden subgraph problem on the maximum number of edges in a graph that does not have a given subgraph.
An example of an -vertex graph that does not contain any -vertex clique may be formed by partitioning the set of vertices into parts of equal or nearly equal size, and connecting two vertices by an edge whenever they belong to two different parts. The resulting graph is the Turán graph . Turán's theorem states that the Turán graph has the largest number of edges among all Kr+1-free n-vertex graphs.
Turán's theorem, and the Turán graphs giving its extreme case, were first described and studied by Hungarian mathematician Pál Turán in 1941. The special case of the theorem for triangle-free graphs is known as Mantel's theorem; it was stated in 1907 by Willem Mantel, a Dutch mathematician.
Turán's theorem states that every graph with vertices that does not contain as a subgraph has at most as many edges as the Turán graph . For a fixed value of , this graph hasedges, using little-o notation. Intuitively, this means that as gets larger, the fraction of edges included in gets closer and closer to . Many of the following proofs only give the upper bound of .
list five different proofs of Turán's theorem.
Many of the proofs involve reducing to the case where the graph is a complete multipartite graph, and showing that the number of edges is maximized when there are parts of size as close as possible to equal.
This was Turán's original proof. Take a -free graph on vertices with the maximal number of edges. Find a (which exists by maximality), and partition the vertices into the set of the vertices in the and the set of the other vertices.
Now, one can bound edges above as follows:
There are exactly edges within .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
thumb|Exemple de graphe possédant une 3-clique (en rouge) : les trois sommets de ce sous-graphe sont tous adjacents deux-à-deux. thumb|Exemple de « biclique » : le graphe biparti complet K3,3. Une clique d'un graphe non orienté est, en théorie des graphes, un sous-ensemble des sommets de ce graphe dont le sous-graphe induit est complet, c'est-à-dire que deux sommets quelconques de la clique sont toujours adjacents. Une clique maximum d'un graphe est une clique dont le cardinal est le plus grand (c'est-à-dire qu'elle possède le plus grand nombre de sommets).
En théorie des graphes, un graphe extrémal (anglais : extremal graph) par rapport à une propriété est un graphe tel que l'ajout de n'importe quelle arête amène le graphe à vérifier la propriété . L'étude des graphes extrémaux se décompose en deux sujets : la recherche de bornes inférieures sur le nombre d'arêtes nécessaires à assurer la propriété (voire sur d'autres paramètres comme le degré minimum) et la caractérisation des graphes extrémaux proprement dits. L'étude des graphes extrémaux est une branche de l'étude combinatoire des graphes.
In graph theory, an area of mathematics, a claw-free graph is a graph that does not have a claw as an induced subgraph. A claw is another name for the complete bipartite graph K1,3 (that is, a star graph comprising three edges, three leaves, and a central vertex). A claw-free graph is a graph in which no induced subgraph is a claw; i.e., any subset of four vertices has other than only three edges connecting them in this pattern. Equivalently, a claw-free graph is a graph in which the neighborhood of any vertex is the complement of a triangle-free graph.
Couvre les propriétés stochastiques, les structures du réseau, les modèles, les statistiques, les mesures de centralité et les méthodes d'échantillonnage dans l'analyse des données du réseau.
Explore les limites extrêmes des théorèmes, des processus ponctuels et des extrêmes multivariés dans la modélisation des séries chronologiques à valeur extrême, en mettant l'accent sur l'effet de la dépendance locale à l'égard des valeurs extrêmes.
Explore les applications de théorie des valeurs extrêmes, les stratégies d'estimation et les techniques de modélisation pour l'analyse statistique des extrêmes dans les séries chronologiques.
We consider that a network is an observation, and a collection of observed networks forms a sample. In this setting, we provide methods to test whether all observations in a network sample are drawn from a specified model. We achieve this by deriving the j ...
AMER STATISTICAL ASSOC2020
, ,
An ordered graph H is a simple graph with a linear order on its vertex set. The corresponding Turan problem, first studied by Pach and Tardos, asks for the maximum number ex(
A clique covering of a graph G is a set of cliques of G such that any edge of G is contained in one of these cliques, and the weight of a clique covering is the sum of the sizes of the cliques in it. The sigma clique cover number scc(G) of a graph G, is de ...