Concept

Holonomic basis

In mathematics and mathematical physics, a coordinate basis or holonomic basis for a differentiable manifold M is a set of basis vector fields {e_1, ..., e_n} defined at every point P of a region of the manifold as where δs is the displacement vector between the point P and a nearby point Q whose coordinate separation from P is δx^α along the coordinate curve x^α (i.e. the curve on the manifold through P for which the local coordinate x^α varies and all other coordinates are constant). It is possible to make an association between such a basis and directional derivative operators. Given a parameterized curve C on the manifold defined by x^α(λ) with the tangent vector u = u^αe_α, where u^α = dx^α/dλ, and a function f(x^α) defined in a neighbourhood of C, the variation of f along C can be written as Since we have that u = u^αe_α, the identification is often made between a coordinate basis vector e_α and the partial derivative operator ∂/∂x^α, under the interpretation of vectors as operators acting on functions. A local condition for a basis {e_1, ..., e_n} to be holonomic is that all mutual Lie derivatives vanish: A basis that is not holonomic is called an anholonomic, non-holonomic or non-coordinate basis. Given a metric tensor g on a manifold M, it is in general not possible to find a coordinate basis that is orthonormal in any open region U of M. An obvious exception is when M is the real coordinate space R^n considered as a manifold with g being the Euclidean metric δ_ij e^i ⊗ e^j at every point.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.