MATH-310: AlgebraThis is an introduction to modern algebra: groups, rings and fields.
MATH-317: Algebra V - Galois theoryGalois theory lies at the interface of Field Theory and Group Theory. It aims to describe the algebraic symmetries of fields. We will focus on Galois theory for finite field extensions and some applic
PHYS-757: Axiomatic Quantum Field TheoryPresentation of Wightman's axiomatic framework to QFT as well as to the necessary mathematical objects to their understanding (Hilbert analysis, distributions, group representations,...).
Proofs of
MATH-506: Topology IV.b - cohomology ringsSingular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
PHYS-431: Quantum field theory IThe goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
MGT-418: Convex optimizationThis course introduces the theory and application of modern convex optimization from an engineering perspective.
MATH-680: Monstrous moonshineThe monstrous moonshine is an unexpected connection between the Monster group and modular functions. In the course we will explain the statement of the conjecture and study the main ideas and concepts