Concept

Universal enveloping algebra

Related courses (10)
MATH-492: Representation theory of semisimple lie algebras
We will establish the major results in the representation theory of semisimple Lie algebras over the field of complex numbers, and that of the related algebraic groups.
MATH-334: Representation theory
Study the basics of representation theory of groups and associative algebras.
MATH-310: Algebra
This is an introduction to modern algebra: groups, rings and fields.
MATH-317: Algebra V - Galois theory
Galois theory lies at the interface of Field Theory and Group Theory. It aims to describe the algebraic symmetries of fields. We will focus on Galois theory for finite field extensions and some applic
PHYS-757: Axiomatic Quantum Field Theory
Presentation of Wightman's axiomatic framework to QFT as well as to the necessary mathematical objects to their understanding (Hilbert analysis, distributions, group representations,...). Proofs of
MATH-506: Topology IV.b - cohomology rings
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
PHYS-431: Quantum field theory I
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
MGT-418: Convex optimization
This course introduces the theory and application of modern convex optimization from an engineering perspective.
MATH-686: Introduction to geometric representation theory
This course presents geometric constructions of irreducible representations of semi-simple Lie Algebras and their Weyl groups by means of Springer theory.
MATH-680: Monstrous moonshine
The monstrous moonshine is an unexpected connection between the Monster group and modular functions. In the course we will explain the statement of the conjecture and study the main ideas and concepts

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.