Isogeometric analysis is a powerful paradigm which exploits the high smoothness of splines for the numerical solution of high order partial differential equations. However, the tensor-product structure of standard multivariate B-spline models is not well s ...
In this thesis, we study interactions between algebraic and coalgebraic structures in infinity-categories (more precisely, in the quasicategorical model of (infinity, 1)-categories). We define a notion of a Hopf algebra H in an E-2-monoidal infinity-catego ...
In this thesis, we give a modern treatment of Dwyer's tame homotopy theory using the language of ∞-categories.
We introduce the notion of tame spectra and show it has a concrete algebraic description.
We then carry out a study of ∞-operads an ...
Let G be either a simple linear algebraic group over an algebraically closed field of characteristic l>0 or a quantum group at an l-th root of unity. The category Rep(G) of finite-dimensional G-modules is non-semisimple. In this thesis, we develop new tech ...
We consider a statistical model for finite-rank symmetric tensor factorization and prove a single-letter variational expression for its asymptotic mutual information when the tensor is of even order. The proof applies the adaptive interpolation method orig ...
A language is said to be homogeneous when all its words have the same length. Homogeneous languages thus form a monoid under concatenation. It becomes freely commutative under the simultaneous actions of every permutation group G(n) on the collection of ho ...
We consider a statistical model for finite-rank symmetric tensor factorization and prove a single-letter variational expression for its mutual information when the tensor is of even order. The proof uses the adaptive interpolation method, for which rank-on ...
We study the kinematics of correlation functions of local and extended operators in a conformal field theory. We present a new method for constructing the tensor structures associated to primary operators in an arbitrary bosonic representation of the Loren ...
We compute the L-2-Betti numbers of the free C*-tensor categories, which are the representation categories of the universal unitary quantum groups A(u)(F). We show that the L-2-Betti numbers of the dual of a compact quantum group G are equal to the L-2-Bet ...
As part of the study of correspondence functors, the present paper investigates their tensor product and proves some of its main properties. In particular, the correspondence functor associated to a finite lattice has the structure of a commutative algebra ...