Closed immersionIn algebraic geometry, a closed immersion of schemes is a morphism of schemes that identifies Z as a closed subset of X such that locally, regular functions on Z can be extended to X. The latter condition can be formalized by saying that is surjective. An example is the inclusion map induced by the canonical map . The following are equivalent: is a closed immersion. For every open affine , there exists an ideal such that as schemes over U. There exists an open affine covering and for each j there exists an ideal such that as schemes over .
Highly structured ring spectrumIn mathematics, a highly structured ring spectrum or -ring is an object in homotopy theory encoding a refinement of a multiplicative structure on a cohomology theory. A commutative version of an -ring is called an -ring. While originally motivated by questions of geometric topology and bundle theory, they are today most often used in stable homotopy theory. Highly structured ring spectra have better formal properties than multiplicative cohomology theories – a point utilized, for example, in the construction of topological modular forms, and which has allowed also new constructions of more classical objects such as Morava K-theory.
Derived algebraic geometryDerived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras (over ), simplicial commutative rings or -ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness (e.g., Tor) of the structure sheaf. Grothendieck's scheme theory allows the structure sheaf to carry nilpotent elements.
Invertible sheafIn mathematics, an invertible sheaf is a sheaf on a ringed space which has an inverse with respect to tensor product of sheaves of modules. It is the equivalent in algebraic geometry of the topological notion of a line bundle. Due to their interactions with Cartier divisors, they play a central role in the study of algebraic varieties. Let (X, OX) be a ringed space. Isomorphism classes of sheaves of OX-modules form a monoid under the operation of tensor product of OX-modules. The identity element for this operation is OX itself.
Éclatement (mathématiques)En mathématiques, un éclatement est un type d'application birationnelle entre ou algébriques qui est un isomorphisme en dehors de sous-variétés propres Le cas le plus simple est celui où D est un point ; E est alors un diviseur isomorphe à un espace projectif. L'éclatement de l'origine dans s'obtient de la façon suivante. Soit Pn – 1 l'espace projectif de dimension n – 1 muni de coordonnées . Soit le sous-ensemble de Cn × Pn – 1 défini par les équations pour i, j = 1, ..., n.
Geometric invariant theoryIn mathematics, geometric invariant theory (or GIT) is a method for constructing quotients by group actions in algebraic geometry, used to construct moduli spaces. It was developed by David Mumford in 1965, using ideas from the paper in classical invariant theory. Geometric invariant theory studies an action of a group G on an algebraic variety (or scheme) X and provides techniques for forming the 'quotient' of X by G as a scheme with reasonable properties.
UnipotentEn mathématiques, un élément unipotent r d'un anneau unitaire R est un tel que r − 1 est un élément nilpotent ; en d'autres termes, (r − 1)n vaut zéro pour n assez grand. En particulier, une matrice carrée M est une matrice unipotente si et seulement si son polynôme caractéristique P(t) est une puissance de t − 1. Ainsi, toutes les valeurs propres d'une matrice unipotente valent 1. Le terme quasi-unipotent signifie qu'une certaine puissance de l'élément est unipotente.
Inverse image functorIn mathematics, specifically in algebraic topology and algebraic geometry, an inverse image functor is a contravariant construction of sheaves; here “contravariant” in the sense given a map , the inverse image functor is a functor from the of sheaves on Y to the category of sheaves on X. The is the primary operation on sheaves, with the simplest definition. The inverse image exhibits some relatively subtle features. Suppose we are given a sheaf on and that we want to transport to using a continuous map .
Zariski's main theoremIn algebraic geometry, Zariski's main theorem, proved by , is a statement about the structure of birational morphisms stating roughly that there is only one branch at any normal point of a variety. It is the special case of Zariski's connectedness theorem when the two varieties are birational. Zariski's main theorem can be stated in several ways which at first sight seem to be quite different, but are in fact deeply related.
Linear system of divisorsIn algebraic geometry, a linear system of divisors is an algebraic generalization of the geometric notion of a family of curves; the dimension of the linear system corresponds to the number of parameters of the family. These arose first in the form of a linear system of algebraic curves in the projective plane. It assumed a more general form, through gradual generalisation, so that one could speak of linear equivalence of divisors D on a general scheme or even a ringed space (X, OX).