En mathématiques, un élément unipotent r d'un anneau unitaire R est un tel que r − 1 est un élément nilpotent ; en d'autres termes, (r − 1)n vaut zéro pour n assez grand. En particulier, une matrice carrée M est une matrice unipotente si et seulement si son polynôme caractéristique P(t) est une puissance de t − 1. Ainsi, toutes les valeurs propres d'une matrice unipotente valent 1. Le terme quasi-unipotent signifie qu'une certaine puissance de l'élément est unipotente. Par exemple, une matrice diagonalisable dont toutes les valeurs propres sont des racines de l'unité est quasi-unipotente. Dans la théorie des groupes algébriques, un élément d'un groupe est unipotent s'il agit de manière unipotente dans une certaine représentation naturelle du groupe. Un groupe algébrique affine unipotent est alors un groupe dont tous les éléments sont unipotents. Pour n entier naturel, soit le groupe des matrices triangulaires supérieures avec des sur la diagonale, c'est-à-dire le groupe Alors, un groupe unipotent peut être défini comme étant un groupe isomorphe à un sous-groupe d'un certain . En utilisant la théorie des schémas, le groupe peut être défini comme le schéma en groupes et un schéma en groupes affine est unipotent si c'est un sous-schéma en groupes fermé de ce schéma. Un élément x d'un groupe algébrique affine est unipotent si l'opérateur de translation à droite associé, rx, sur l'anneau de coordonnées affines A[G] de G est localement unipotent en tant qu'élément de l'anneau des endomorphismes linéaires de A[G]. (Ici, « localement unipotent » signifie que la restriction à tout sous-espace stable de dimension finie de A[G] est unipotente au sens habituel de la théorie des anneaux.) Un groupe algébrique affine est dit unipotent si tous ses éléments sont unipotents. Tout groupe algébrique unipotent est isomorphe à un sous-groupe fermé du groupe des matrices triangulaires supérieures dont les coefficients diagonaux valent 1, et inversement tout tel sous-groupe est unipotent.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
MATH-479: Linear algebraic groups
The aim of the course is to give an introduction to linear algebraic groups and to give an insight into a beautiful subject that combines algebraic geometry with group theory.
MATH-679: Group schemes
This is a course about group schemes, with an emphasis on structural theorems for algebraic groups (e.g. Barsotti--Chevalley's theorem). All the basics will be covered towards the proof of such theore
MATH-620(2): Topics in the theory of reductive algebraic groups, Lie algebras, and representation theory II
The topics addressed in this course are the structure theory of reductive algebraic groups, their associated Lie algebras, the related finite groups of Lie type, and the representation theory of all o
Afficher plus
Publications associées (20)
Concepts associés (6)
Semi-simplicity
In mathematics, semi-simplicity is a widespread concept in disciplines such as linear algebra, abstract algebra, representation theory, , and algebraic geometry. A semi-simple object is one that can be decomposed into a sum of simple objects, and simple objects are those that do not contain non-trivial proper sub-objects. The precise definitions of these words depends on the context. For example, if G is a finite group, then a nontrivial finite-dimensional representation V over a field is said to be simple if the only subrepresentations it contains are either {0} or V (these are also called irreducible representations).
Groupe réductif
En mathématiques, un groupe réductif est un groupe algébrique G sur un corps algébriquement clos tel que le radical unipotent de G (c'est-à-dire le sous-groupe des éléments unipotents de ) soit trivial. Tout est réductif, de même que tout tore algébrique et tout groupe général linéaire. Plus généralement, sur un corps k non nécessairement algébriquement clos, un groupe réductif est un groupe algébrique affine lisse G tel que le radical unipotent de G sur la clôture algébrique de k soit trivial.
Groupe algébrique
En géométrie algébrique, la notion de groupe algébrique est un équivalent des groupes de Lie en géométrie différentielle ou complexe. Un groupe algébrique est une variété algébrique munie d'une loi de groupe compatible avec sa structure de variété algébrique. Un groupe algébrique sur un corps (commutatif) K est une variété algébrique sur munie : d'un morphisme de K-variétés algébriques (appelé aussi multiplication) .
Afficher plus
MOOCs associés (9)
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algèbre Linéaire (Partie 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.