En théorie des probabilités et en statistique, la loi de Wishart est la généralisation multidimensionnelle de la loi du χ2, ou, dans le cas où le nombre de degré de libertés n'est pas entier, de la loi gamma. La loi est dénommée en l'honneur de John Wishart qui la formula pour la première fois en 1928. C'est une famille de lois de probabilité sur les matrices définies positives, symétriques. Une variable aléatoire de loi de Wishart est donc une matrice aléatoire. Trois lois sont d'une grande importance dans l'estimation des matrices de variance-covariance. Si une variable aléatoire X suit une loi de Wishart, on notera ou Supposons que Y est une matrice n×p, les lignes sont des vecteurs aléatoires indépendants et suivent une loi normale p-dimensionnelle centrée : Alors la loi de Wishart est la loi de probabilité de la matrice p×p connue sous le nom matrice de dispersion. L'entier naturel n est le nombre de degrés de liberté. Pour n>p, la matrice X est inversible avec probabilité 1 si V est inversible. Si p=1 et V=1, alors la loi de Wishart est la loi du χ2 à n degrés de liberté. La loi de Wishart apparait comme la loi d'une matrice de covariance d'un échantillon de valeurs suivant une loi normale multidimensionnelle. Elle apparait fréquemment dans les tests de maximum de vraisemblance en analyse statistique multivariée. Elle apparait également en théorie spectrale des matrices aléatoires et en analyse bayésienne multidimensionnelle. La loi de Wishart peut être caractérisée par sa densité de probabilité de la manière suivante. On fixe V une matrice p×p symétrique définie positive (paramètre d'échelle). Si n≥p, alors la densité de probabilité de la loi de Wishart est donnée par : pour toute matrice p×p X symétrique définie positive, et où Γp est la fonction gamma multidimensionnelle définie par : En fait la définition précédente peut être étendue à tout réel n≥p. Si n

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (11)
MATH-444: Multivariate statistics
Multivariate statistics focusses on inferring the joint distributional properties of several random variables, seen as random vectors, with a main focus on uncovering their underlying dependence struc
MATH-232: Probability and statistics (for IC)
A basic course in probability and statistics
Afficher plus
Séances de cours associées (34)
Vecteurs aléatoires gaussiens : Génération conditionnelle
Explore la génération de vecteurs aléatoires gaussiens avec des composantes spécifiques basées sur des valeurs observées et explique le concept de fonctions de covariance définies positives dans les processus gaussiens.
Interféromètre Mach-Zehnder
Explore l'interféromètre Mach-Zehnder, les matrices de densité et les probabilités de détection dans les systèmes quantiques.
Matrices de densité réduite: System+Environnement
Couvre le concept de matrices de densité et l'interaction système-environnement.
Afficher plus
Publications associées (40)
Concepts associés (16)
Conjugate prior
In Bayesian probability theory, if the posterior distribution is in the same probability distribution family as the prior probability distribution , the prior and posterior are then called conjugate distributions, and the prior is called a conjugate prior for the likelihood function . A conjugate prior is an algebraic convenience, giving a closed-form expression for the posterior; otherwise, numerical integration may be necessary. Further, conjugate priors may give intuition by more transparently showing how a likelihood function updates a prior distribution.
Loi de Fisher
En théorie des probabilités et en statistiques, la loi de Fisher ou encore loi de Fisher-Snedecor ou encore loi F de Snedecor est une loi de probabilité continue. Elle tire son nom des statisticiens Ronald Aylmer Fisher et George Snedecor. La loi de Fisher survient très fréquemment en tant que loi de la statistique de test lorsque l'hypothèse nulle est vraie, dans des tests statistiques, comme les tests du ratio de vraisemblance, dans les tests de Chow utilisés en économétrie, ou encore dans l'analyse de la variance (ANOVA) via le test de Fisher.
Matrice aléatoire
En théorie des probabilités et en physique mathématique, une matrice aléatoire est une matrice dont les éléments sont des variables aléatoires. La théorie des matrices aléatoires a pour objectif de comprendre certaines propriétés de ces matrices, comme leur norme d'opérateur, leurs valeurs propres ou leurs valeurs singulières. Face à la complexité croissante des spectres nucléaires observés expérimentalement dans les années 1950, Wigner a suggéré de remplacer l'opérateur hamiltonien du noyau par une matrice aléatoire.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.