Explore la distribution de Wishart, les propriétés des matrices de Wishart, et la distribution de T2 de Hotelling, y compris la statistique T2 de deux exemples Hotelling.
Explorer l'estimation du rétrécissement des matrices de covariance à haute dimension, en comparant les approches linéaires et non linéaires pour une meilleure précision.
Explore la génération de vecteurs aléatoires gaussiens avec des composantes spécifiques basées sur des valeurs observées et explique le concept de fonctions de covariance définies positives dans les processus gaussiens.