Jean-Philippe AnsermetJean-Philippe Ansermet was born March 1, 1957 in Lausanne (legal origin Vaumarcus, NE). He obtained a diploma as physics engineer of EPFL in 1980. He went on to get a PhD from the University of Illinois at Urbana-Champaign where, from 1985 to 1987, he persued as post-doc with Prof. Slichter his research on catalysis by solid state NMR studies of molecules bound to the surface of catalysts. From 1987 to 1992 he worked at the materials research center of Ciba-Geigy, on polymers for microelectronics, composites, dielectrics and organic charge transfer complexes. In March 1992, as professor of experimental physics, he developed a laboratory on the theme of nanostructured materials and turned full professor in 1995. Since 1992, he teaches classical mechanics, first to future engineering students, since 2004 to physics majors. Since 2000, he teaches thermodynamics also, to the same group of students. He offers a graduate course in spintronics, and another on spin dynamics. His research activities concern the fabrication and properties of magnetic nanostructures produced by electrodeposition. His involvement since the early days of spintronics have allowed him to gain recognition for his work on giant magnetoresistance (CPP-GMR), magnetic relaxation of single nanostructures, and was among the leading groups demonstrating magnetization reversal by spin-polarized currents. Furthermore, his group uses nuclear magnetic resonance , on the one hand as means of investigation of surfaces and electrodes, on the other hand, as a local probe of the electronic properties of complex ferromagnetic oxides.
Christian Gabriel TheilerChristian Theiler obtained his Master’s degree in physics from ETH Zurich in 2007 and his PhD from EPFL in 2011. He then joined MIT as a postdoctoral associate to work on the Alcator C-Mod tokamak. In 2014, he returned to EPFL as a EUROfusion fellow, to join the TCV tokamak team. Two years later, he was named Tenure Track Assistant Professor in Plasma Physics at EPFL. Christian’s research focuses on tokamak boundary physics and related diagnostic techniques. He has contributed to the understanding of the formation, propagation, and control of turbulent plasma structures, called blobs, and gained new insights on the structure of transport barriers in the plasma periphery in different high-confinement regimes. His current research focuses on detachment physics and turbulence characteristics in conventional and alternative divertor magnetic geometries.
Rolf GruetterAwards:
1999 Young Investigator Award Plenary Lectureship
, International Society for Neurochemistry
2011 Fellow
, ESMRMB
2011 Teaching Award
, Section Sciences de la Vie, EPFL
Martinus GijsMartin A.M. Gijs received his degree in physics in 1981 from the Katholieke Universiteit Leuven, Belgium and his Ph.D. degree in physics at the same university in 1986. He joined the Philips Research Laboratories in Eindhoven, The Netherlands, in 1987. Subsequently, he has worked there on micro-and nano-fabrication processes of high critical temperature superconducting Josephson and tunnel junctions, the microfabrication of microstructures in magnetic multilayers showing the giant magnetoresistance effect, the design and realisation of miniaturised motors for hard disk applications and the design and realisation of planar transformers for miniaturised power applications. He joined EPFL in 1997. His present interests are in developing technologies for novel magnetic devices, new microfabrication technologies for microsystems fabrication in general and the development and use of microsystems technologies for microfluidic and biomedical applications in particular.
Stefano RusponiEducation:
• 1999 Doctoral degree in Physics obtained at the Physics Department, University of Genova PhD thesis title: “STM study of nanostructures induced by ion sputtering on noble metals”.
• 1994 University degree in Physics achieved at the Physics Department, University of Genova. Final mark: 110/110 cum laude
Diploma thesis title: “A project for a new method of EELS spectroscopy”.
• 1988 High school at the Liceo Scientifico G. P. Vieusseux in Imperia. Final mark: 60/60.
Research career plan:
• 2016 – present MER: Ecole Polytechnique Fédérale de Lausanne (EPFL) in the group of Prof. Harald Brune
• 2003 – 2016: 1er. Assistant: Ecole Polytechnique Fédérale de Lausanne (EPFL) in the group of Prof. Harald Brune
• 2000-2003: Assistant: Ecole Polytechnique Fédérale de Lausanne (EPFL) under the direction of Prof. Harald Brune
• 1999-2000: Research associate: Max-Planck-Institut of Stuttgart under the direction of Prof. Klaus Kern
Miscellaneous of professional activities:
a) Review panel
• Member of the Elettra proposal review panel
• Member of the committee of the EDPY doctoral school in Physics at the EPFL
b) Co-worker in the building of the X-Treme beamline:
c) Referee for scientific journals:
• Nat. Commun., Phys. Rev. Lett., Phys. Rev. B, J. Appl. Phys., Surf. Sci., J. Magn. Magn. Mater.
Funding record
a) Funding awarded
• Quantum Properties of Nanostructures at Surfaces, FNS 200020-157081/1;
(01/10/2014 – 31/09/2017); total amount attributed: 832'558 CHF; co-applicant
• Controlling magnetic anisotropy by interfacial coupling, FNS 200021_146715/1;
(01/01/2014 – 31/12/2016); total amount attributed: 367'800 CHF; co-applicant
• Self-assembled bi-metallic magnetic pillar superlattices with enhanced blocking temperature, SER C10.0135; (01/08/2011 – 01/08/2013); total amount attributed: 170'000 CHF; co-applicant
• Magnetic and Catalytic Properties of Surface Supported Metallic Nanostructures, FNS 200020-120493/1; (01/04/2008 – 31/03/2010); total amount attributed: 402'669 CHF; co-applicant
• Magnetic and Catalytic Properties of Surface Supported Metallic Nanostructures, FNS 200020-112322/1; (01/04/2006 – 31/03/2008); total amount attributed: 347'633 CHF; co-applicant
b) Approved proposals for the allocation of beamtime
Swiss Light Source (SLS):
main proposer: 9
co-proposer: 4
Elettra:
main proposer: 5
co-proposer: 1
European Synchrotron Radiation Facility (ESRF):
main proposer: 2
co-proposer: 11
Student supervisor
• Co-director of PhD thesis: 4 PhD students
-
Dimitris Mousadakos: Seeking the smallest room temperature magnets; (in progress)
-
Romana Baltic: Controlling single atom magnetic anisotropy by interfacial coupling; (in progress)
-
Alberto Cavallin: Growth and magnetism of nanostructures investigated by STM, MOKE, and XMCD; (Oct. 2013), Thèse N°5941
-
Sergio Vlaic: Magnetism and atomic scale structure of bimetallic nanostructures at surfaces; (Dec. 2012), Thèse N° 5625
• Supervisor of PhD thesis (without co-direction): 4 PhD students
-
Anne Lehnert: Magnetism of individual adatoms and of epitaxial monolayers; (Jun. 2009), Thèse N° 4411
-
Geraud Moulas: Growth and magnetism of 2D bimetallic nanostructures; (Dec. 2008), Thèse N° 4231
-
Philipp Buluschek: Submonolayer growth of cobalt on metallic and insulating surfaces studied by scanning tunneling microscopy and kinetic Monte-Carlo simulations; (Nov. 2007), Thèse N° 3944
-
Nicolas Weiss: Propriétés magnétiques de nanostructures de Co adsorbées; (Apr. 2004), Thèse N° 2980
• Supervisor of Master thesis: 6 students
• Supervisor of semester projects: 9 students
• PhD thesis referee: 2 students Olivier MartinOlivier J.F. Martin a obtenu le diplôme (M.Sc.) et le doctorat en physique de l'Ecole Polytechnique Fédérale de Lausanne (EPFL) en 1989, respectivement 1994. En 1989 il a rejoint le laboratoire de recherche d'IBM à Rüschlikon près de Zurich, où il a étudié les propriétés optiques et thermiques des lasers semiconducteur. Entre 1994 et 1997 il était collaborateur scientifique de l'Ecole Polytechnique Fédérale de Zurich (ETHZ). En 1997 il a reçu une bourse Profil du Fonds National Suisse de la Recherche Scientifique (FNSRS) lui permettant de mettre sur pied un groupe de recherche indépendant. Entre 1996 et 1999, Olivier Martin a passé plus d'une année et demi aux U.S.A. comme collaborateur invité de l'Université de Californie à San Diego. En 2001 il a reçu une bourse de professeur assistant du FNSRS et devint professeur de Nano-optique à l'ETHZ. En 2003 il a été nommé professeur de nanophotonique et de traitement optique du signal à l'EPFL où il dirige actuellement le laboratoire de Nanophotonique & Métrologie.
Joaquim Loizu CisquellaJoaquim Loizu graduated in Physics at the École Polytechnique Fédérale de Lausanne, carrying out his Master thesis project at the Center for Bio-Inspired Technology, Imperial College London, on the theoretical and numerical study of the biophysics of light-sensitive neurons. In 2009, he started his PhD studies with Prof. Paolo Ricci at the Swiss Plasma Center, the major plasma and fusion laboratory in Switzerland. His thesis focused on the theory of plasma-wall interactions and their effect on the mean flows and turbulence in magnetized plasmas. He obtained his PhD in December 2013. In 2014, he joined the Max-Planck-Princeton Center for plasma research as a Postdoctoral Research Fellow, spending one year at the Princeton Plasma Physics Laboratory and one year at the Max-Planck-Institute for Plasma Physics in Greifswald, Germany. During this time, he worked on three-dimensional magnetohydrodynamics, studying the formation of singular currents and magnetic islands at rational surfaces. In 2016, he obtained a two-years Eurofusion Postdoctoral Fellowship to carry out research at the Max-Planck-Institute for Plasma Physics in Greifswald, Germany. During this time, he focused on the computation of 3D MHD equilibria in stellarators, including the possibility of magnetic islands and magnetic field-line chaos. In 2018, he joined the Swiss Plasma Center as a Scientist and Lecturer. He is also one of the leaders of the Simons Collaboration on Hidden Symmetries and Fusion Energy. His current research interests include MHD equilibrium and stability, magnetic reconnection, self-organization, non-neutral plasmas, plasma sheaths, and plasma transport in chaotic magnetic fields.