In mathematics, the universal invariant or u-invariant of a field describes the structure of quadratic forms over the field.
The universal invariant u(F) of a field F is the largest dimension of an anisotropic quadratic space over F, or ∞ if this does not exist. Since formally real fields have anisotropic quadratic forms (sums of squares) in every dimension, the invariant is only of interest for other fields. An equivalent formulation is that u is the smallest number such that every form of dimension greater than u is isotropic, or that every form of dimension at least u is universal.
For the complex numbers, u(C) = 1.
If F is quadratically closed then u(F) = 1.
The function field of an algebraic curve over an algebraically closed field has u ≤ 2; this follows from Tsen's theorem that such a field is quasi-algebraically closed.
If F is a non-real global or local field, or more generally a linked field, then u(F) = 1, 2, 4 or 8.
If F is not formally real and the characteristic of F is not 2 then u(F) is at most , the index of the squares in the multiplicative group of F.
u(F) cannot take the values 3, 5, or 7. Fields exist with u = 6 and u = 9.
Merkurjev has shown that every even integer occurs as the value of u(F) for some F.
Alexander Vishik proved that there are fields with u-invariant for all .
The u-invariant is bounded under finite-degree field extensions. If E/F is a field extension of degree n then
In the case of quadratic extensions, the u-invariant is bounded by
and all values in this range are achieved.
Since the u-invariant is of little interest in the case of formally real fields, we define a general u-invariant to be the maximum dimension of an anisotropic form in the torsion subgroup of the Witt ring of F, or ∞ if this does not exist. For non-formally-real fields, the Witt ring is torsion, so this agrees with the previous definition. For a formally real field, the general u-invariant is either even or ∞.
u(F) ≤ 1 if and only if F is a Pythagorean field.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, un groupe de Witt sur un corps commutatif, nommé d'après Ernst Witt, est un groupe abélien dont les éléments sont représentés par des formes bilinéaires symétriques sur ce corps. Considérons un corps commutatif k. Tous les espaces vectoriels considérés ici seront implicitement supposés de dimension finie. On dit que deux formes bilinéaires symétriques sont équivalentes si on peut obtenir l'une à partir de l'autre en additionnant 0 ou plusieurs copies d'un (forme bilinéaire symétrique non dégénérée en dimension 2 avec un vecteur de norme nulle).
Let G be a simple linear algebraic group over an algebraically dosed field K of characteristic p >= 0 and let V be an irreducible rational G-module with highest weight A. When is self-dual, a basic question to ask is whether V has a non-degenerate G-invari ...
Let K be a field of characteristic different from 2. It is known that a quadratic Pfister form over K is hyperbolic once it is isotropic. It is also known that the dimension of an anisotropic quadratic form over K belonging to a given power of the fundamen ...