Résumé
Single-wire earth return (SWER) or single-wire ground return is a single-wire transmission line which supplies single-phase electric power from an electrical grid to remote areas at lowest cost. Its distinguishing feature is that the earth (or sometimes a body of water) is used as the return path for the current, to avoid the need for a second wire (or neutral wire) to act as a return path. Single-wire earth return is principally used for rural electrification, but also finds use for larger isolated loads such as water pumps. It is also used for high-voltage direct current over submarine power cables. Electric single-phase railway traction, such as light rail, uses a very similar system. It uses resistors to earth to reduce hazards from rail voltages, but the primary return currents are through the rails. Lloyd Mandeno, OBE (1888–1973) fully developed SWER in New Zealand around 1925 for rural electrification. Although he termed it "Earth Working Single Wire Line", it was often called "Mandeno’s Clothesline". More than 200,000 kilometres (100,000 miles) have now been installed in Australia and New Zealand. It is considered safe, reliable and low-cost, provided that safety features and earthing are correctly installed. The Australian standards are widely used and cited. It has been applied around the world, such as in the Canadian province of Saskatchewan; Brazil; Africa; and portions of the United States' Upper Midwest and Alaska (Bethel). SWER is a viable choice for a distribution system when conventional return current wiring would cost more than SWER's isolation transformers and small power losses. Power engineers experienced with both SWER and conventional power lines rate SWER as equally safe, more reliable, less costly, but with slightly lower efficiency than conventional lines. SWER can cause fires when maintenance is poor, and bushfire is a risk. Power is supplied to the SWER line by an isolating transformer of up to 300 kVA. This transformer isolates the grid from ground or earth, and changes the grid voltage (typically 22 or 33 kV line-to-line) to the SWER voltage (typically 12.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.