Single-wire earth return (SWER) or single-wire ground return is a single-wire transmission line which supplies single-phase electric power from an electrical grid to remote areas at lowest cost. Its distinguishing feature is that the earth (or sometimes a body of water) is used as the return path for the current, to avoid the need for a second wire (or neutral wire) to act as a return path.
Single-wire earth return is principally used for rural electrification, but also finds use for larger isolated loads such as water pumps. It is also used for high-voltage direct current over submarine power cables. Electric single-phase railway traction, such as light rail, uses a very similar system. It uses resistors to earth to reduce hazards from rail voltages, but the primary return currents are through the rails.
Lloyd Mandeno, OBE (1888–1973) fully developed SWER in New Zealand around 1925 for rural electrification. Although he termed it "Earth Working Single Wire Line", it was often called "Mandeno’s Clothesline". More than 200,000 kilometres (100,000 miles) have now been installed in Australia and New Zealand. It is considered safe, reliable and low-cost, provided that safety features and earthing are correctly installed. The Australian standards are widely used and cited. It has been applied around the world, such as in the Canadian province of Saskatchewan; Brazil; Africa; and portions of the United States' Upper Midwest and Alaska (Bethel).
SWER is a viable choice for a distribution system when conventional return current wiring would cost more than SWER's isolation transformers and small power losses. Power engineers experienced with both SWER and conventional power lines rate SWER as equally safe, more reliable, less costly, but with slightly lower efficiency than conventional lines. SWER can cause fires when maintenance is poor, and bushfire is a risk.
Power is supplied to the SWER line by an isolating transformer of up to 300 kVA. This transformer isolates the grid from ground or earth, and changes the grid voltage (typically 22 or 33 kV line-to-line) to the SWER voltage (typically 12.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores solutions and examples for multiconductor transmission lines, covering line parameters, wave propagation, inductance, capacitance matrices, and modal wave equations.
In electrical engineering, ground and neutral are circuit conductors used in alternating current (AC) electrical systems. The ground circuit is connected to earth, and neutral circuit is usually connected to ground. As the neutral point of an electrical supply system is often connected to earth ground, ground and neutral are closely related. Under certain conditions, a conductor used to connect to a system neutral is also used for grounding (earthing) of equipment and structures.
Stray voltage is the occurrence of electrical potential between two objects that ideally should not have any voltage difference between them. Small voltages often exist between two grounded objects in separate locations, due to normal current flow in the power system. Large voltages can appear on the enclosures of electrical equipment due to a fault in the electrical power system, such as a failure of insulation. Stray voltage is any case of undesirable elevated electrical potential, but more precise terminology gives an indication of the source of the voltage.
In electrical engineering, ground or earth may be a reference point in an electrical circuit from which voltages are measured, a common return path for electric current, or a direct physical connection to the Earth. Electrical circuits may be connected to ground for several reasons. Exposed conductive parts of electrical equipment are connected to ground, to protect users from electrical shock hazard. If internal insulation fails, dangerous voltages may appear on the exposed conductive parts.
This paper proposes small-argument approximations for two closed-form equations that were recently derived for the calculation of the ground-return impedance and admittance of underground cables. The proposed expressions are shown to be accurate up to 1 MH ...
ELSEVIER SCIENCE SA2023
, ,
In recent years, the electromagnetic time reversal (EMTR) theory has been successfully applied for locating various sources of disturbances, such as short-circuit faults, in power systems. In this paper, a theoretical analysis of the feasibility of applyin ...
In this paper, a rigorous and independent validation of two different approaches for calculating the ground-return impedance and admittance of multiconductor underground cable systems using the transmission line theory is carried out. Furthermore, analyses ...