In algebraic number theory the n-th power residue symbol (for an integer n > 2) is a generalization of the (quadratic) Legendre symbol to n-th powers. These symbols are used in the statement and proof of cubic, quartic, Eisenstein, and related higher reciprocity laws.
Let k be an algebraic number field with ring of integers that contains a primitive n-th root of unity
Let be a prime ideal and assume that n and are coprime (i.e. .)
The norm of is defined as the cardinality of the residue class ring (note that since is prime the residue class ring is a finite field):
An analogue of Fermat's theorem holds in If then
And finally, suppose These facts imply that
is well-defined and congruent to a unique -th root of unity
This root of unity is called the n-th power residue symbol for and is denoted by
The n-th power symbol has properties completely analogous to those of the classical (quadratic) Legendre symbol ( is a fixed primitive -th root of unity):
In all cases (zero and nonzero)
The n-th power residue symbol is related to the Hilbert symbol for the prime by
in the case coprime to n, where is any uniformising element for the local field .
The -th power symbol may be extended to take non-prime ideals or non-zero elements as its "denominator", in the same way that the Jacobi symbol extends the Legendre symbol.
Any ideal is the product of prime ideals, and in one way only:
The -th power symbol is extended multiplicatively:
For then we define
where is the principal ideal generated by
Analogous to the quadratic Jacobi symbol, this symbol is multiplicative in the top and bottom parameters.
If then
Since the symbol is always an -th root of unity, because of its multiplicativity it is equal to 1 whenever one parameter is an -th power; the converse is not true.
If then
If then is not an -th power modulo
If then may or may not be an -th power modulo
The power reciprocity law, the analogue of the law of quadratic reciprocity, may be formulated in terms of the Hilbert symbols as
whenever and are coprime.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how
Quartic or biquadratic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence x4 ≡ p (mod q) is solvable; the word "reciprocity" comes from the form of some of these theorems, in that they relate the solvability of the congruence x4 ≡ p (mod q) to that of x4 ≡ q (mod p). Euler made the first conjectures about biquadratic reciprocity. Gauss published two monographs on biquadratic reciprocity.
En mathématiques, la 'loi de réciprocité d'Artin' est un résultat important de théorie des nombres établi par Emil Artin dans une série d'articles publiés entre 1924 et 1930. Au cœur de la théorie du corps de classe, la réciprocité d'Artin tire son nom d'une parenté avec la réciprocité quadratique introduite par Gauss, et d'autres lois d'expression similaire, la réciprocité d'Eisenstein, de Kummer, ou de Hilbert. Une des motivations initiales derrière ce résultat était le neuvième problème de Hilbert, auquel la réciprocité d'Artin apporte une réponse partielle.
En théorie des nombres, le symbole de Legendre est une fonction de deux variables entières à valeurs dans {–1, 0, 1}, qui caractérise les résidus quadratiques. Il a été introduit par Adrien-Marie Legendre, au cours de ses efforts pour démontrer la loi de réciprocité quadratique. Il ne dépend donc que de la classe de a modulo p. Le cas particulier p = 2 est inclus dans cette définition mais sans intérêt : vaut 0 si a est pair et 1 sinon.
Explore les nombres premiers dans la progression arithmétique, en se concentrant sur les fonctions L, les caractères et la divergence de la somme de 1 sur p pour p congruent à un modulo q.
Explore le rayonnement et les antennes, couvrant le bilan de puissance, les paramètres de transmission et des exemples pratiques de concepts d'antenne.
Explore la cryptographie RSA, couvrant les tests de primalité, les résidus quadratiques et les applications cryptographiques.
Post-quantum cryptography is a branch of cryptography which deals with cryptographic algorithms whose hardness assumptions are not based on problems known to be solvable by a quantum computer, such as the RSA problem, factoring or discrete logarithms.This ...
This article presents optimization results on the MOVA undeniable signature scheme presented last year by Monnerat and Vaudenay at PKC'04 as well as its generalization proposed at Asiacrypt'04 which is based on a secret group homomorphism. The original MOV ...