Explore la découverte causale à l'aide de modèles variables latents, en mettant l'accent sur les défis et les solutions pour déduire les relations causales à partir de données non gaussiennes.
Examine l'inférence causale, en soulignant l'importance de s'engager dans une ontologie pour tirer des inférences causales et choisir des estimands appropriés.
Explore l'invariance, la causalité et la robustesse de l'analyse des données, en abordant les défis et les implications pour la généralisation de la distribution.
Étudier les limites des effets causaux en utilisant des paramètres de sensibilité à l'échelle de la différence de risque, en abordant les limites et en proposant de nouvelles approches.