Explorer la conception expérimentale pour mesurer les résultats d'apprentissage et discuter des biais, de l'équivalence de groupe et des conceptions à l'intérieur des sujets.
Explore l'inférence causale, les graphiques dirigés et l'équité dans les algorithmes, en mettant l'accent sur l'indépendance conditionnelle et les implications des GAD.
Introduit des méthodes de pointe dans l'optimisation et la simulation, couvrant des sujets tels que l'analyse statistique, la réduction de la variance et les projets de simulation.
Explore le raisonnement incertain, les réseaux bayésiens et la résolution stochastique, soulignant l'importance de la logique probabiliste et de l'enlèvement.
Explore l'importance de la causalité pour l'apprentissage machine robuste, couvrant les ensembles de données idéaux, les problèmes de données manquants, les modèles graphiques et les modèles d'interférence.