Angular distance or angular separation, also known as apparent distance or apparent separation, denoted , is the angle between the two sightlines, or between two point objects as viewed from an observer. Angular distance appears in mathematics (in particular geometry and trigonometry) and all natural sciences (e.g., kinematics, astronomy, and geophysics). In the classical mechanics of rotating objects, it appears alongside angular velocity, angular acceleration, angular momentum, moment of inertia and torque. The term angular distance (or separation) is technically synonymous with angle itself, but is meant to suggest the linear distance between objects (for instance, a couple of stars observed from Earth). Since the angular distance (or separation) is conceptually identical to an angle, it is measured in the same units, such as degrees or radians, using instruments such as goniometers or optical instruments specially designed to point in well-defined directions and record the corresponding angles (such as telescopes). To derive the equation that describes the angular separation of two points located on the surface of a sphere as seen from the center of the sphere, we use the example of two astronomical objects and observed from the Earth. The objects and are defined by their celestial coordinates, namely their right ascensions (RA), ; and declinations (dec), . Let indicate the observer on Earth, assumed to be located at the center of the celestial sphere. The dot product of the vectors and is equal to: which is equivalent to: In the frame, the two unitary vectors are decomposed into: Therefore, then: The above expression is valid for any position of A and B on the sphere. In astronomy, it often happens that the considered objects are really close in the sky: stars in a telescope field of view, binary stars, the satellites of the giant planets of the solar system, etc. In the case where radian, implying and , we can develop the above expression and simplify it.
Cameron Alexander Campbell Lemon, Rémy Elie Joseph, Johan Richard
Mahmut Selman Sakar, Mehdi Ali Gadiri, Junsun Hwang, Amit Yedidia Dolev