Résumé
Le principe de Fermat est un principe physique, attribué à Pierre de Fermat, qui sert de fondement à l'optique géométrique. Il décrit la forme du chemin optique d'un rayon lumineux et s'énonce ainsi : Une conséquence première du principe de Fermat est la propagation rectiligne des rayons lumineux dans les milieux homogènes. En effet, dans un milieu homogène, le temps de parcours est proportionnel à la longueur du trajet, et le chemin le plus court dans un espace euclidien pour aller d’un point à un autre est la ligne droite. Il permet de retrouver la plupart des résultats de l'optique géométrique, en particulier les lois de la réflexion sur les miroirs, les lois de la réfraction, la loi de Snell-Descartes, etc. Ce principe doit son nom à Pierre de Fermat, qui l'a énoncé en 1657 mais qui n'a soumis son mémoire, Synthèse pour les réfractions qu'en 1662. Tandis que René Descartes, dans La Dioptrique, expliquait les lois de l'optique en faisant , Fermat se base sur ce principe finaliste qu'il estime être le plus « probable » : En 1746, Maupertuis utilise un principe finaliste équivalent pour introduire le principe de moindre action, qu'ensuite Euler et Lagrange développeront. En 1924, Louis de Broglie identifie le principe de Fermat et celui de moindre action en proposant qu'à chaque particule massive soit associée une onde : cela ouvrit la voie de la dualité onde-particule menant à l'équation de Schrödinger, fondamentale en mécanique quantique. Le principe de Fermat a été énoncé ci-dessus sous sa forme commune mais on doit l'énoncer sous la forme plus rigoureuse : En effet si, dans la plupart des cas, on rencontre des chemins dont la durée de parcours est minimale, il ne faut pas oublier pour autant que d'autres situations peuvent exister. Par exemple, pour aller d'un point A à un point B situés à l'intérieur du miroir concave représenté ci-contre, en se réfléchissant une seule fois sur la surface, la lumière peut emprunter deux parcours de durée minimale (en rouge) et un parcours de durée maximale (en vert) parmi les parcours constitués de deux segments AM et BM.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.