En mathématiques et en particulier en théorie des ensembles, un cardinal limite est un type particulier de nombre cardinal. Il en existe deux définitions, une "faible" et l'autre "forte", qu'il faut distinguer selon le contexte.
Un nombre cardinal est un cardinal faiblement limite si ce n'est ni 0, ni un cardinal successeur. Ceci signifie qu'on ne peut pas "accéder" à par une opération de succession sur les cardinaux, c'est-à-dire que ne s'écrit pas sous la forme .
Un cardinal non nul est dit fortement limite s'il ne peut pas être atteint par applications successives de l'opération "ensemble des parties de". Autrement dit, quel que soit le cardinal , on a . Un tel cardinal est nécessairement limite au sens faible puisqu'on a toujours et .
Le premier cardinal infini est fortement limite puisque l'ensemble des parties de tout ensemble fini est fini.
On peut construire des cardinaux faiblement limites simplement en prenant avec un ordinal limite, comme ou encore , avec le premier ordinal infini.
Pour obtenir des cardinaux fortement limite, on peut utiliser les nombres Beth () définis par induction :On remarque alors que pour tout ordinal limite , le cardinal sera fortement limite, puisque pour tout , il existe tel que donc . Il existe donc des cardinaux fortement limites aussi grands qu'on le souhaite.
Si l'on suppose l'axiome du choix (AC), tous les cardinaux infinis sont des alephs. Dans ce cas, les cardinaux faiblement limites sont exactement ceux s'écrivant avec un ordinal limite. Sinon, il faut aussi rajouter les cardinaux infinis qui ne sont pas des alephs, c'est-à-dire ceux qui ne sont en bijection avec aucun ordinal. Si l'axiome du choix est faux, de tels cardinaux existent puisque le contraire du théorème de Zermelo est vrai.
En supposant l'hypothèse généralisé du continu (GCH), c'est-à-dire que pour tout cardinal , il n'existe pas de cardinal tel que alors un cardinal faiblement limite est toujours fortement limite. En effet, GCH implique que tous les cardinaux infinis sont des alephs (Sierpiński).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Branche des mathématiques en lien avec le fondement des mathématiques et l'informatique théorique. Le cours est centré sur la logique du 1er ordre et l'articulation entre syntaxe et sémantique.
En théorie des ensembles, un cardinal infini est dit régulier s'il est égal à sa cofinalité. Intuitivement, un cardinal est régulier si toute réunion indexée par un ensemble petit d'ensembles petits est petite, où un ensemble est dit petit s'il est de cardinalité strictement inférieure à . Une autre définition possible équivalente est que est régulier si pour tout cardinal , toute fonction est bornée. Un cardinal qui n'est pas régulier est dit singulier.
En mathématiques, plus précisément en théorie des ensembles, on dit qu'un ensemble E a la puissance du continu (ou parfois le cardinal du continu) s'il est équipotent à l'ensemble R des nombres réels, c'est-à-dire s'il existe une bijection de E dans R. Le cardinal de R est parfois noté , en référence au , nom donné à l'ensemble ordonné (R, ≤). Cet ordre (et a fortiori le cardinal de l'ensemble sous-jacent) est entièrement déterminé (à isomorphisme près) par quelques propriétés classiques.
En mathématiques et en théorie des ensembles, l'univers constructible, ou l'univers constructible de Gödel, noté , est une classe d'ensembles qui peuvent entièrement être décrits en termes d'ensembles plus simples. Elle a été introduite en 1938 par Kurt Gödel dans son article sur . Il y montrait que cette classe est un de la théorie ZF et que l'axiome du choix et l'hypothèse généralisée du continu sont vrais dans ce modèle. Ceci prouve que ces deux propositions sont cohérentes avec les axiomes de ZF, à condition que ZF soit déjà cohérente.
Explore la définition des opérations arithmétiques à travers le comptage, avec des informations sur les nombres cardinaux, le travail de Cantor et le Sudoku.
Explore la conformation des polymères au-delà du modèle de la chaîne librement articulée, en soulignant l'importance des corrélations et de la rigidité.
Understanding looping probabilities, including the particular case of ring closure or cyclization, of fluctuating polymers (e.g., DNA) is important in many applications in molecular biology and chemistry. In a continuum limit the configuration of a polymer ...
We investigate the relationship between the N-clock model (also known as planar Potts model or DOUBLE-STRUCK CAPITAL ZN-model) and the XY model (at zero temperature) through a Gamma-convergence analysis of a suitable rescaling of the energy as both the num ...
WILEY2021
,
This paper concerns a model of bed load transport, which describes the advection and dispersion of coarse particles carried by a turbulent water stream. The challenge is to develop a microstructural approach that, on the one hand, yields a parsimonious des ...