Aleph (nombre)vignette|Aleph-zéro, le plus petit aleph En théorie des ensembles, les alephs sont les cardinaux des ensembles infinis bien ordonnés. En quelque sorte, le cardinal d'un ensemble représente sa « taille », indépendamment de toute structure que puisse avoir cet ensemble (celle d'ordre en particulier dans le cas présent). Ils sont nommés ainsi d'après la lettre aleph, notée א, première lettre de l'alphabet hébreu, qui est utilisée pour les représenter.
Cardinal inaccessibleEn mathématiques, et plus précisément en théorie des ensembles, un cardinal inaccessible est un cardinal ne pouvant être construit à partir de cardinaux plus petits à l'aide des axiomes de ZFC ; cette propriété fait qu'un cardinal inaccessible est un grand cardinal. Un cardinal infini א est : soit א0 si α = 0 ; soit limite (au sens faible) si α est un ordinal limite ; soit successeur de א si α = β + 1.
Nombre ordinalvignette|Spirale représentant les nombres ordinaux inférieurs à ωω. En mathématiques, on appelle nombre ordinal un objet permettant de caractériser le type d'ordre d'un ensemble bien ordonné quelconque, tout comme en linguistique, les mots premier, deuxième, troisième, quatrième, etc. s'appellent des adjectifs numéraux ordinaux, et servent à préciser le rang d'un objet dans une collection, ou l'ordre d'un événement dans une succession.
Nombre réelEn mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Hypothèse du continuEn théorie des ensembles, l'hypothèse du continu (HC), due à Georg Cantor, affirme qu'il n'existe aucun ensemble dont le cardinal est strictement compris entre le cardinal de l'ensemble des entiers naturels et celui de l'ensemble des nombres réels. En d'autres termes : tout ensemble strictement plus grand, au sens de la cardinalité, que l'ensemble des entiers naturels doit contenir une « copie » de l'ensemble des nombres réels.
Ordinal limiteEn mathématiques et plus précisément en théorie des ensembles, un ordinal limite est un nombre ordinal non nul qui n'est pas un ordinal successeur. D'après la définition ci-dessus, un ordinal α est limite si et seulement s'il satisfait l'une des propositions équivalentes suivantes : α ≠ 0 et ∀ β β+1 ≠ α ; 0 < α et ∀ β < α β+1 < α ; α ≠ 0 et ∀ β < α ∃ γ β < γ < α ; α est non nul et égal à la borne supérieure de tous les ordinaux qui lui sont strictement inférieurs (l'ensemble des ordinaux strictement inférieurs à un ordinal successeur β +1 possède un plus grand élément, l'ordinal β) ; en tant qu'ensemble d'ordinaux, α n'est pas vide et ne possède pas de plus grand élément ; α peut s'écrire sous la forme ω·γ avec γ > 0 ; α est un point d'accumulation de la classe des nombres ordinaux, munie de la topologie de l'ordre.