Quark starA quark star is a hypothetical type of compact, exotic star, where extremely high core temperature and pressure has forced nuclear particles to form quark matter, a continuous state of matter consisting of free quarks. Some massive stars collapse to form neutron stars at the end of their life cycle, as has been both observed and explained theoretically. Under the extreme temperatures and pressures inside neutron stars, the neutrons are normally kept apart by a degeneracy pressure, stabilizing the star and hindering further gravitational collapse.
Dioxyde de carbone supercritiquethumb|Diagramme de phases pression-température du dioxyde de carbone. Le dioxyde de carbone supercritique est un état fluide du dioxyde de carbone () obtenu lorsqu'il est maintenu au-dessus de ses température et pression critiques respectivement et . Le dioxyde de carbone est à l'état gazeux dans l'atmosphère terrestre dans les conditions normales de température et de pression (CNTP) ou à l'état solide appelé neige carbonique quand il est gelé.
QCD matterQuark matter or QCD matter (quantum chromodynamic) refers to any of a number of hypothetical phases of matter whose degrees of freedom include quarks and gluons, of which the prominent example is quark-gluon plasma. Several series of conferences in 2019, 2020, and 2021 were devoted to this topic. Quarks are liberated into quark matter at extremely high temperatures and/or densities, and some of them are still only theoretical as they require conditions so extreme that they cannot be produced in any laboratory, especially not at equilibrium conditions.
Matière étrangeLa matière étrange est une forme particulière de matière qui se caractérise par la présence de quarks étranges. Les modèles théoriques prédisent qu'elle est présente dans le cœur des étoiles à neutrons. L'existence de la matière étrange est prédite sous la forme d'une dite étrange, une « soupe » de quarks up, down et étranges. La matière à quarks étrange se distingue de la matière à quarks non étrange (qui ne comporte que des quarks up et down), qui elle-même diffère de la matière nucléaire par le fait que les quarks up et down n'y sont pas liés trois par trois sous la forme de neutrons et de protons.
Ultracold atomIn condensed matter physics, an ultracold atom is an atom with a temperature near absolute zero. At such temperatures, an atom's quantum-mechanical properties become important. To reach such low temperatures, a combination of several techniques typically has to be used. First, atoms are trapped and pre-cooled via laser cooling in a magneto-optical trap. To reach the lowest possible temperature, further cooling is performed using evaporative cooling in a magnetic or optical trap.
Liquide ioniqueLes liquides ioniques sont des sels possédant une température de fusion inférieure à et souvent même inférieurs à la température ambiante. Les liquides ioniques fondus à la température ambiante présentent de nombreux avantages pratiques et sont donc très utilisés. Le terme générique "liquide ionique" (en anglais : ionic liquid) a été introduit en 1943. L'ioliomique est en chimie (biologie ou médecine) l'étude du comportement des ions dans les liquides. La liste des liquides ioniques ne cesse d’augmenter.
Lambda pointThe lambda point is the temperature at which normal fluid helium (helium I) makes the transition to superfluid helium II (approximately 2.17 K at 1 atmosphere). The lowest pressure at which He-I and He-II can coexist is the vapor−He-I−He-II triple point at and , which is the "saturated vapor pressure" at that temperature (pure helium gas in thermal equilibrium over the liquid surface, in a hermetic container). The highest pressure at which He-I and He-II can coexist is the bcc−He-I−He-II triple point with a helium solid at , .
Verre de spinvignette|Représentation schématique d'une structure aléatoire d'un verre de spins (haut) et d'un état ferromagnétique (bas). Les verres de spin sont des alliages métalliques comportant un petit nombre d'impuretés magnétiques disposées au hasard dans l'alliage. À chaque impureté est associée un spin. Le couplage entre ces différents spins peut être plus ou moins intense - attractif ou répulsif - en fonction de la distance qui les sépare.
Strangeness and quark–gluon plasmaIn high-energy nuclear physics, strangeness production in relativistic heavy-ion collisions is a signature and diagnostic tool of quark–gluon plasma (QGP) formation and properties. Unlike up and down quarks, from which everyday matter is made, heavier quark flavors such as strange and charm typically approach chemical equilibrium in a dynamic evolution process. QGP (also known as quark matter) is an interacting localized assembly of quarks and gluons at thermal (kinetic) and not necessarily chemical (abundance) equilibrium.
Condensat fermioniqueUn condensat fermionique est un ensemble de fermions identiques qui présente une phase de superfluidité à basse température. C'est l'équivalent pour les fermions des condensats de Bose-Einstein pour les bosons. Les premiers condensats de Bose-Einstein moléculaires furent produits en 1995, ouvrant la voie à l'étude des condensats quantiques. En 1999, l'équipe de Deborah Jin, refroidit pour la première fois un gaz de fermions dans le régime de dégénérescence quantique mais l'interaction entre particules n'était pas suffisamment forte pour montrer une transition de phase.