En thermodynamique, un processus isentropique est un processus thermodynamique au cours duquel l'entropie du système étudié reste constante. La constance de l'entropie peut être obtenue par un processus idéal qui est à la fois adiabatique et réversible. Les transferts d'énergie par travail doivent alors être sans frottement et il ne doit y avoir ni transfert d'énergie thermique (chaleur) ni transfert de matière. Un tel processus idéal est utile en ingénierie pour modéliser certains processus réels. Néanmoins, une transformation sans changement d'entropie peut également être obtenue si le travail échangé par le système comprend des frottements internes au système (ce serait donc un processus irréversible) mais si, lors de cette transformation, de l'énergie thermique est retirée du système pour compenser le frottement interne, de manière à laisser l'entropie inchangée. Dans ce deuxième cas, le mot « isentropique » est utilisé au sens étymologique (= sans changement d’entropie), et n'est pas compatible avec la première définition. La variation de l'entropie d'un système au cours d'une transformation a deux causes : la création d'entropie due au caractère irréversible de la transformation ; l'échange d'entropie entre le système et le milieu extérieur qui l'entoure, par le biais d'un transfert thermique. On doit donc distinguer : les transformations isentropiques réversibles (pas de création d'entropie) et adiabatiques (pas d'échange thermique) ; et les transformations sans changement d'entropie qui sont irréversibles mais dont la création d'entropie est compensée par une entropie cédée par le système au milieu extérieur, en raison d'un transfert thermique. La deuxième principe de la thermodynamique pose que : où est la quantité d'énergie que le système gagne en s’échauffant, est la température de l'environnement et est le changement d'entropie du système considéré. Le signe égal (de cette inégalité) correspond à un processus réversible, qui est la limite théorique idéale ne se produisant jamais réellement, quand les températures du système et de son environnement sont égales.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (13)
PHYS-105: Advanced physics II (thermodynamics)
Ce cours présente la thermodynamique en tant que théorie permettant une description d'un grand nombre de phénomènes importants en physique, chimie et ingéniere, et d'effets de transport. Une introduc
ME-251: Thermodynamics and energetics I
The course introduces the basic concepts of thermodynamics and heat transfer, and thermodynamic properties of matter and their calculation. The students will master the concepts of heat, mass, and mom
PHYS-106(a): General physics : thermodynamics
Le but du cours de Physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Afficher plus
Séances de cours associées (97)
Schlieren Images et vitesse du son
Explore les images de Schlieren et la vitesse du son dans différents matériaux.
Thermodynamique et énergétique I
Explore les concepts fondamentaux de thermodynamique, les lois, le transfert d'énergie et l'analyse des systèmes.
Coefficients calorimétriques: Entropie
Explique les coefficients calorimétriques pour les relations d'entropie et de Mayer dans les processus réversibles.
Afficher plus
Publications associées (69)

Intrinsic performance loss rate: Decoupling reversible and irreversible losses for an improved assessment of photovoltaic system performance

Christophe Ballif, Alessandro Francesco Aldo Virtuani, Hugo James André Quest

Solar electricity is set to play a pivotal role in future energy systems. In view of a market that may soon reach the terawatt (TW) scale, a careful assessment of the performance of photovoltaic (PV) systems becomes critical. Research on PV fault detection ...
Wiley2024

Selection and Optimal Use of Nanoporous Materials for Adsorption Energy Technologies

Emanuele Piccoli

Due to the large waste of heat in the power and industrial sectors, our use of energy is inefficient. Moreover, it relies on rapidly depleting and greenhouse-gas-emitting sources such as fossil fuels. While the scarcity of energy resources is a relevant so ...
EPFL2023

Fast and Durable Lithium Storage Enabled by Tuning Entropy in Wadsley-Roth Phase Titanium Niobium Oxides

Kangning Zhao, Yuehui Li, Rui Xia, Liping Zhong

Wadsley-Roth phase titanium niobium oxides have received considerable interest as anodes for lithium ion batteries. However, the volume expansion and sluggish ion/electron transport kinetics retard its application in grid scale. Here, fast and durable lith ...
WILEY-V C H VERLAG GMBH2023
Afficher plus
Concepts associés (17)
Processus isotherme
vignette|250px|Plusieurs isothermes d'un gaz parfait sur un diagramme représentant la pression en fonction du volume (diagramme de Clapeyron). vignette|250px|La zone en bleu correspond au travail dans un processus isotherme (à température constante). vignette|250px|La zone en vert correspond au travail dans un processus adiabatique (sans échange de chaleur). Le travail adiabatique est pris comme référence, indiquant la conservation de l'énergie. Le travail isotherme lui est supérieur dans les deux sens, détente et compression.
Cycle thermodynamique
Un cycle thermodynamique est une suite de transformations successives qui part d'un système thermodynamique dans un état donné, le transforme et le ramène finalement à son état initial, de manière à pouvoir recommencer le cycle. Au cours du cycle, le système voit sa température, sa pression ou d'autres paramètres d'état varier, tandis qu'il échange du travail et réalise un transfert thermique avec l'extérieur. Il existe de nombreux cycles thermodynamiques, dont voici quelques-uns.
Volume (thermodynamics)
In thermodynamics, the volume of a system is an important extensive parameter for describing its thermodynamic state. The specific volume, an intensive property, is the system's volume per unit of mass. Volume is a function of state and is interdependent with other thermodynamic properties such as pressure and temperature. For example, volume is related to the pressure and temperature of an ideal gas by the ideal gas law. The physical volume of a system may or may not coincide with a control volume used to analyze the system.
Afficher plus
MOOCs associés (8)
Thermodynamique II
Ce cours complète le MOOC « Thermodynamique : fondements » qui vous permettra de mettre en application les concepts fondamentaux de la thermodynamique. Pour atteindre cet objectif, le Professeur J.-P
Thermodynamique II
Ce cours complète le MOOC « Thermodynamique : fondements » qui vous permettra de mettre en application les concepts fondamentaux de la thermodynamique. Pour atteindre cet objectif, le Professeur J.-P
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.