Ricci calculusIn mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900.
Dualité de HodgeEn algèbre linéaire, l'opérateur de Hodge, introduit par William Vallance Douglas Hodge, est un opérateur sur l'algèbre extérieure d'un espace vectoriel euclidien orienté. Il est usuellement noté par une étoile qui précède l'élément auquel l'opérateur est appliqué. On parle ainsi d'étoile de Hodge. Si la dimension de l'espace est n, l'opérateur établit une correspondance entre les k-vecteurs et les (n-k)-vecteurs, appelée dualité de Hodge. En géométrie différentielle, l'opérateur de Hodge peut être étendu aux fibrés vectoriels riemanniens orientés.
Algèbre extérieureEn mathématiques, et plus précisément en algèbre et en analyse vectorielle, l'algèbre extérieure d'un espace vectoriel E est une algèbre associative graduée, notée . La multiplication entre deux éléments a et b est appelée le produit extérieur et est notée . Le carré de tout élément de E est zéro (), on dit que la multiplication est alternée, ce qui entraîne que pour deux éléments de E : (la loi est « anti-commutative »). L'algèbre extérieure est aussi appelée algèbre de Grassmann nommée ainsi en l'honneur de Hermann Grassmann.
Contraction tensorielleEn algèbre multilinéaire, la contraction est un procédé de calcul sur les tenseurs faisant intervenir la dualité. En coordonnées elle se représente de façon très simple en utilisant les notations d'Einstein et consiste à faire une somme sur un indice muet. Il est possible de contracter un tenseur unique de rang p en un tenseur de rang p-2, par exemple en calculant la trace d'une matrice. Il est possible également de contracter deux tenseurs, ce qui généralise la notion de produit matriciel.