En algèbre linéaire, l'opérateur de Hodge, introduit par William Vallance Douglas Hodge, est un opérateur sur l'algèbre extérieure d'un espace vectoriel euclidien orienté. Il est usuellement noté par une étoile qui précède l'élément auquel l'opérateur est appliqué. On parle ainsi d'étoile de Hodge. Si la dimension de l'espace est n, l'opérateur établit une correspondance entre les k-vecteurs et les (n-k)-vecteurs, appelée dualité de Hodge.
En géométrie différentielle, l'opérateur de Hodge peut être étendu aux fibrés vectoriels riemanniens orientés. Appliqué à l'espace cotangent des variétés riemanniennes orientées, l'opérateur de Hodge permet de définir une norme L2 sur l'espace des formes différentielles. La codifférentielle se définit alors comme l'adjoint forme de la dérivée extérieure. Cette codifférentielle intervient notamment dans la définition des formes harmoniques.
Soit E espace vectoriel euclidien orienté de dimension finie n. Les sous-espaces et des k-vecteurs et des n-k vecteurs sont de même dimension, à savoir le coefficient binomial . Il est possible de définir un isomorphisme linéaire noté * entre ces deux espaces et appelé opérateur de Hodge.
Pour toute base orthonormale directe ,
Il s'étend ensuite par linéarité à toute l'algèbre extérieure. Cette définition est peu satisfaisante puisqu'elle fait intervenir des bases, même si on peut montrer que la définition ne dépend pas de la base orthonormée directe choisie. Elle a néanmoins l'avantage de bien décrire le comportement de l'opérateur de Hodge sous forme de complétion de base orthonormale directe.
Une définition plus convenable consiste à faire intervenir la forme volume ω de l'espace vectoriel euclidien orienté E. Le dual de Hodge s'obtient en effectuant la contraction
Pour un k-vecteur de l'espace E de dimension n, appliquer deux fois l'opérateur de Hodge donne l'identité, au signe près
L'opérateur de Hodge permet de définir un produit scalaire sur l'algèbre extérieure par la relation
Pour ce produit scalaire, les k-vecteurs obtenus par produit extérieur à partir de la base orthonormale de E constituent une base orthonormale de ΛE.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En algèbre, le terme de bivecteur désigne un tenseur antisymétrique d'ordre 2, c'est-à-dire une quantité X pouvant s'écrire où les quantités ω sont des formes linéaires et le signe désigne le produit extérieur. Un bivecteur peut être vu comme une application linéaire agissant sur les vecteurs et les transformant en formes linéaires. Les coefficients X_ab peuvent être vus comme formant une matrice antisymétrique. Les bivecteurs sont abondamment utilisés en relativité générale, où plusieurs tenseurs peuvent être reliés à des bivecteurs.
En mathématiques, et plus précisément en algèbre et en analyse vectorielle, l'algèbre extérieure d'un espace vectoriel E est une algèbre associative graduée, notée . La multiplication entre deux éléments a et b est appelée le produit extérieur et est notée . Le carré de tout élément de E est zéro (), on dit que la multiplication est alternée, ce qui entraîne que pour deux éléments de E : (la loi est « anti-commutative »). L'algèbre extérieure est aussi appelée algèbre de Grassmann nommée ainsi en l'honneur de Hermann Grassmann.
En mathématiques, la cohomologie de De Rham est un outil de topologie différentielle, c'est-à-dire adapté à l'étude des variétés différentielles. Il s'agit d'une théorie cohomologique fondée sur des propriétés algébriques des espaces de formes différentielles sur la variété. Elle porte le nom du mathématicien Georges de Rham. Le affirme que le morphisme naturel, de la cohomologie de De Rham d'une variété différentielle vers sa cohomologie singulière à coefficients réels, est bijectif.
The subject deals with differential geometry and its relation to global analysis, partial differential equations, geometric measure theory and variational principles to name a few.
In this reading group, we will work together through recent important papers in applied topology.
Participants will take turns presenting articles, then leading a discussion of the contents.
The goal of this course is to help students learn the basic theory of complex manifolds and Hodge theory.
In this thesis, we propose to formally derive amplitude equations governing the weakly nonlinear evolution of non-normal dynamical systems, when they respond to harmonic or stochastic forcing, or to an initial condition. This approach reconciles the non-mo ...
EPFL2024
In this thesis, we apply cochain complexes as an algebraic model of space in a diverse range of mathematical and scientific settings. We begin with an algebraic-discrete Morse theory model of auto-encoding cochain data, connecting the homotopy theory of d ...
We study applications of spectral positivity and the averaged null energy condition (ANEC) to renormalization group (RG) flows in two-dimensional quantum field theory. We find a succinct new proof of the Zamolodchikov c-theorem, and derive further independ ...