In chemical kinetics, the entropy of activation of a reaction is one of the two parameters (along with the enthalpy of activation) which are typically obtained from the temperature dependence of a reaction rate constant, when these data are analyzed using the Eyring equation of the transition state theory. The standard entropy of activation is symbolized ΔS‡ and equals the change in entropy when the reactants change from their initial state to the activated complex or transition state (Δ = change, S = entropy, ‡ = activation).
Entropy of activation determines the preexponential factor A of the Arrhenius equation for temperature dependence of reaction rates. The relationship depends on the molecularity of the reaction:
for reactions in solution and unimolecular gas reactions
A = (ekBT/h) exp(ΔS‡/R),
while for bimolecular gas reactions
A = (e2kBT/h) (RT/p) exp(ΔS‡/R).
In these equations e is the base of natural logarithms, h is the Planck constant, kB is the Boltzmann constant and T the absolute temperature. R' is the ideal gas constant in units of (bar·L)/(mol·K). The factor is needed because of the pressure dependence of the reaction rate. R' = 8.3145 × 10−2 (bar·L)/(mol·K).
The value of ΔS‡ provides clues about the molecularity of the rate determining step in a reaction, i.e. the number of molecules that enter this step. Positive values suggest that entropy increases upon achieving the transition state, which often indicates a dissociative mechanism in which the activated complex is loosely bound and about to dissociate. Negative values for ΔS‡ indicate that entropy decreases on forming the transition state, which often indicates an associative mechanism in which two reaction partners form a single activated complex.
It is possible to obtain entropy of activation using Eyring equation. This equation is of the form where:
= reaction rate constant
= absolute temperature
= enthalpy of activation
= gas constant
= transmission coefficient
= Boltzmann constant = R/NA, NA = Avogadro constant
= Planck's constant
= entropy of activation
This equation can be turned into the formThe plot of versus gives a straight line with slope from which the enthalpy of activation can be derived and with intercept from which the entropy of activation is derived.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In chemical kinetics, the pre-exponential factor or A factor is the pre-exponential constant in the Arrhenius equation (equation shown below), an empirical relationship between temperature and rate coefficient. It is usually designated by A when determined from experiment, while Z is usually left for collision frequency. The pre-exponential factor can be thought of as a measure of the frequency of properly oriented collisions. It is typically determined experimentally by measuring the rate constant at a particular temperature and fitting the data to the Arrhenius equation.
L'équation d'Eyring, aussi appelée équation d'Eyring-Polanyi en cinétique chimique, relie la vitesse de réaction à la température. Elle a été établie quasi-simultanément en 1935 par Henry Eyring, M.G. Evans et Michael Polanyi. Cette équation découle de la théorie de l'état de transition (ou théorie du complexe activé) et correspond, contrairement à la loi d'Arrhenius, à un modèle théorique basé sur la thermodynamique statistique.
Dans la cinétique chimique, la constante de vitesse (ou le coefficient de vitesse) k est une mesure de la vitesse d'une réaction chimique. Pour une réaction élémentaire ou une étape élémentaire entre les réactifs A et B, la vitesse de réaction dépend des concentrations. La vitesse de réaction dans un réacteur fermé au cours du temps noté v(t) peut être déterminé par l'expression: Ici la constante de proportionnalité k(T) est la constante de vitesse de la réaction, qui dépend de la température.
Cet enseignement vise l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimiques. Le cours et les exercices fournissent la méthodologie
Cet enseignement vise l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimiques. Le cours et les exercices fournissent la méthodologie
Cet enseignement vise l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimiques. Le cours et les exercices fournissent la méthodologie
Explore les réactions péricycliques, en se concentrant sur les mécanismes, les contrôles, les diagrammes de corrélation et les outils pour déterminer les mécanismes de réaction.
Explore les taux observés dans les réactions hétérogènes, l'impact du transfert de masse interne, la cinétique des réactions, l'équation d'Arrhenius et les effets du transfert de chaleur.
We study the spontaneous out-of-plane bending of a planar untwisted ribbon composed of nematic polymer networks activated by a change in temperature. Our theory accounts for both stretching and bending energies, which compete to establish equilibrium. We s ...
SPRINGER2023
,
Supported Pd-based catalysts used in heterogeneously catalyzed liquid phase processes often undergo an activation step through reduction of the oxide phase or of the oxidic passivation layer prior to reaction. An oxidized Pd/Al2O3 catalyst was reduced by u ...
AMER CHEMICAL SOC2021
,
Here we discuss "hidden variables", which are typically introduced during an experiment as a consequence of the application of two independent variables together to create a stimulus. With increased sophistication in modern chemical biology tools and relat ...