Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Observers discriminated the numerical proportion of two sets of elements (N = 9, 13, 33, and 65) that differed either by color or orientation. According to the standard Thurstonian approach, the accuracy of proportion discrimination is determined by irredu ...
Spatial count data models are used to explain and predict the frequency of phenomena such as traffic accidents in geographically distinct entities such as census tracts or road segments. These models are typically estimated using Bayesian Markov chain Mont ...
Multiple lines of evidence at the individual and population level strongly suggest that infection hotspots, or superspreading events, where a single individual infects many others, play a key role in the transmission dynamics of COVID-19. However, most of ...
The Poisson likelihood with rectified linear function as non-linearity is a physically plausible model to discribe the stochastic arrival process of photons or other particles at a detector. At low emission rates the discrete nature of this process leads t ...
We provide an algorithm to generate trajectories of sparse stochastic processes that are solutions of linear ordinary differential equations driven by Levy white noises. A recent paper showed that these processes are limits in law of generalized compound-P ...
We characterize the local smoothness and the asymptotic growth rate of the Levy white noise. We do so by characterizing the weighted Besov spaces in which it is located. We extend known results in two ways. First, we obtain new bounds for the local smoothn ...
We develop approximate inference and learning methods for facilitating the use of probabilistic modeling techniques motivated by applications in two different areas. First, we consider the ill-posed inverse problem of recovering an image from an underdeter ...
Modellers are increasingly relying on the use of continuous random coefficients models, such as Mixed Logit, for the representation of variations in tastes across individuals. In this paper, we provide an in-depth comparison of the performance of the Mixed ...
This paper presents a validation study on statistical non-supervised brain tissue classification techniques in MR images. Several image models assuming different hypotheses regarding the intensity distribution model, the spatial model and the number of cla ...
The modern theory of likelihood inference provides improved inferences in many parametric models, with little more effort than is required for application of standard first-order theory. We outline the relevant computations, and illustrate the calculations ...