Catégorie

Statistique bayésienne

Résumé
La statistique bayésienne est une approche statistique fondée sur l'inférence bayésienne, où la probabilité exprime un degré de croyance en un événement. Le degré initial de croyance peut être basé sur des connaissances a priori, telles que les résultats d'expériences antérieures, ou sur des croyances personnelles concernant l'événement. La perspective bayésienne diffère d'un certain nombre d'autres interprétations de la probabilité, comme l'interprétation fréquentiste qui considère la probabilité comme la limite de la fréquence relative d'un événement après de nombreux essais. Les méthodes statistiques bayésiennes reposent sur le théorème de Bayes pour calculer et mettre à jour les probabilités après l'obtention de nouvelles données. Le théorème de Bayes décrit la probabilité conditionnelle d'un événement basée sur des informations ou des croyances antérieures sur l'événement ou les conditions liées à l'événement. Par exemple, dans l'inférence bayésienne, le théorème de Bayes peut être utilisé pour estimer les paramètres d'une distribution de probabilité ou d'un modèle statistique. Puisque les statistiques bayésiennes traitent la probabilité comme un degré de croyance, le théorème de Bayes peut directement attribuer une distribution de probabilité qui quantifie la croyance au paramètre ou à l'ensemble de paramètres. Les statistiques bayésiennes ont été nommées d'après Thomas Bayes, qui a formulé un cas spécifique du théorème de Bayes dans son article publié en 1763, An Essay towards solving a Problem in the Doctrine of Chances. Dans plusieurs articles allant de la fin du au début du , Pierre-Simon de Laplace a développé l'interprétation bayésienne de la probabilité. Laplace a utilisé des méthodes qui seraient maintenant considérées comme bayésiennes pour résoudre un certain nombre de problèmes statistiques. De nombreuses méthodes bayésiennes ont été développées par des auteurs plus récents, mais le terme n'a pas été couramment utilisé pour décrire ces méthodes avant les années 1950.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.