Walsh matrixHadamard matrix In mathematics, a Walsh matrix is a specific square matrix of dimensions 2^n, where n is some particular natural number. The entries of the matrix are either +1 or −1 and its rows as well as columns are orthogonal, i.e. dot product is zero. The Walsh matrix was proposed by Joseph L. Walsh in 1923. Each row of a Walsh matrix corresponds to a Walsh function. The Walsh matrices are a special case of Hadamard matrices.
Matrice de HadamardUne matrice de Hadamard est une matrice carrée dont les coefficients sont tous 1 ou –1 et dont les lignes sont toutes orthogonales entre elles. Le nom retenu pour ces matrices rend hommage au mathématicien français Jacques Hadamard. Des exemples de telles matrices avaient été donnés par James Joseph Sylvester. Pour une matrice d'ordre , la propriété d'orthogonalité des colonnes peut également s'écrire sous la forme où In est la matrice identité d'ordre et t est la matrice transposée de .
Transformée de HadamardLa transformée de Hadamard (aussi connue sous le nom de « transformée de Walsh-Hadamard ») est un exemple d'une classe généralisée d'une transformée de Fourier. Elle est nommée d'après le mathématicien français Jacques Hadamard et effectue une opération linéaire et involutive avec une matrice orthogonale et symétrique sur 2 nombres réels (ou complexes, bien que les matrices utilisées possèdent des coefficients réels). Ces matrices sont des matrices de Hadamard.
Ondelette de HaarL'ondelette de Haar, ou fonction de Rademacher, est une ondelette créée par Alfréd Haar en 1909. On considère que c'est la première ondelette connue. Il s'agit d'une fonction constante par morceaux, ce qui en fait l'ondelette la plus simple à comprendre et à implémenter. L'ondelette de Haar peut être généralisée par ce qu'on appelle le système de Haar. La fonction-mère des ondelettes de Haar est une fonction constante par morceaux : La fonction d'échelle associée est alors une fonction porte : Le système de Haar est une suite de fonctions continues par morceaux, appartenant à pour .